As one of the most important industrially viable methods for carbon dioxide(CO_(2))utilization,methanol synthesis serves as a platform for production of green fuels and commodity chemicals.For sustainable methanol syn...As one of the most important industrially viable methods for carbon dioxide(CO_(2))utilization,methanol synthesis serves as a platform for production of green fuels and commodity chemicals.For sustainable methanol synthesis,In_(2)O_(3)is an ideal catalyst and has garnered significant attention.Herein,cubic In_(2)O_(3)nanoparticles were prepared via the precipitation method and evaluated for CO_(2)hydrogenation to produce methanol.During the initial 10 h of reaction,CO_(2)conversion gradually increased,accompanied by a slow decrease of methanol selectivity,and the reaction reached equilibrium after 10-20 h on stream.This activation and induction stage may be attributed to the sintering of In_(2)O_(3)nanoparticles and the creation of more oxygen vacancies on In_(2)O_(3)surfaces.Further experimental studies demonstrate that hydrogen induction created additional oxygen vacancies during the catalyst activation stage,enhancing the performance of In_(2)O_(3)catalyst for CO_(2)hydrogenation.Density functional theory calculations and microkinetic simulations further demonstrated that surfaces with higher oxygen vacancy coverages or hydroxylated surfaces formed during this induction period can enhance the reaction rate and increase the CO_(2)conversion.However,they predominantly promote the formation of CO instead of methanol,leading to reduced methanol selectivity.These predictions align well with the above-mentioned experimental observations.Our work thus provides an in-depth analysis of the induction stage of the CO_(2)hydrogenation process on In_(2)O_(3)nano-catalyst,and offers valuable insights for significantly improving the CO_(2)reactivity of In_(2)O_(3)-based catalysts while maintaining long-term stability.展开更多
Hydrogen peroxide(H_(2)O_(2)),an environmentally friendly chemical with high value,is extensively used in industrial production and daily life.However,the traditional anthraquinone method for H_(2)O_(2) production is ...Hydrogen peroxide(H_(2)O_(2)),an environmentally friendly chemical with high value,is extensively used in industrial production and daily life.However,the traditional anthraquinone method for H_(2)O_(2) production is associated with a highly energy-consuming and heavily polluting process.Solor-driven photocatalytic evolution of H_(2)O_(2) is a promising,eco-friendly,and energy-efficient strategy that holds great potential to substitute the traditional approach.Here,a ternary photocatalyst,NiS/CdS/Halloysite nanotubes(NiS/CdS/HNTs)is designed and prepared with an earth-abundant clay mineral HNTs as the support and NiS as a co-catalyst.The pivotal roles of HNTs and NiS in the photocatalytic process are elucidated by experiments and theoretical calculations.HNTs serve as the carrier,which allows CdS to be uniformly dispersed onto its surface as small particles,increasing effective contact with H_(2)O and O_(2) for H_(2)O_(2) formation.Simultaneously,it resulted in the formation of a Schottky junction between NiS and CdS,which not only favors photogenerated charges separating efficiently but also provides a unidirectional path to transfer electrons.Consequently,the optimized NiS/CdS/HNTs composite demonstrates an H_(2)O_(2) evolution rate of 380.5μmol·g^(-1)·h^(-1) without adding any sacrificial agent or extra O_(2),nearly 5.0 times that of pure CdS.This work suggests a feasible idea for designing and developing highly active and low-cost solar energy catalytic composite materials.展开更多
To verify the wear resistance and erosion resistance of Ti-doped Ta_(2)O_(5)coating(TTO),a series of TTOs were prepared by magnetron sputtering technology by controlling the power of the Ti target.The change of growth...To verify the wear resistance and erosion resistance of Ti-doped Ta_(2)O_(5)coating(TTO),a series of TTOs were prepared by magnetron sputtering technology by controlling the power of the Ti target.The change of growth structure,microstructure,and tribological properties of TTOs with Ti target power was studied.After the erosion test,the variation of erosion damage behavior of TTOs with mechanical properties under different erosion conditions was further studied.The results show that the TTOs eliminate the roughness,voids,and defects in the material due to the mobility of the adsorbed atoms during the growth process,and a flat and dense smooth surface is obtained.Tribological tests show that the TTOs are mainly characterized by plastic deformation and microcrack wear mechanism.Higher Ti target power can improve the wear resistance of TTOs.Erosion test results reveal that the impact crater,furrow,micro-cutting,brittle spalling,and crack formation are the main wear mechanisms of the TTOs samples under erosion conditions.展开更多
The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS...The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts.展开更多
Constructing heterojunctions have received significant attention in photocatalysis because of their effi-cient separation of photogenerated carriers and improving light utilization efficiency.Bimetallic sulfides(e.g.N...Constructing heterojunctions have received significant attention in photocatalysis because of their effi-cient separation of photogenerated carriers and improving light utilization efficiency.Bimetallic sulfides(e.g.NiCo_(2)S_(4))are applied in electrocatalysis and supercapacitors that can be coupled with TiO_(2)to form a heterojunction.Owing to the staggered energy band arrangement between TiO_(2)and NiCo_(2)S_(4),the es-tablishing of a Z-scheme heterojunction between them is expected to enhance the carrier separation effi-ciency and reduce the sulfide photo-corrosion.However,the application of NiCo_(2)S_(4)in photocatalysis and studies on the mechanism of the TiO_(2)/NiCo_(2)S_(4)Z-scheme heterojunction have seldom been reported.In this work,we obtained a hollow core-shell TiO_(2)/NiCo_(2)S_(4)Z-scheme photocatalyst through a solvothermal method for photocatalytic hydrogen evolution(PHE).The PHE rate of the optimized TiO_(2)/NiCo_(2)S_(4)-0.3 is 8.55 mmol g^(−1)h^(−1),approximately 34 times higher than pure TiO_(2),94 times higher than pure NiCo_(2)S_(4).The remarkable photocatalytic activity can be ascribed to the hollow structure and the in-situ constructed Z-scheme heterojunction.The photogenerated charge transfer mechanism is revealed by hydroxyl radical trapping experiments and electron paramagnetic resonance(EPR)characterization.The in-situ construc-tion of the Z-scheme heterojunction not only enhances the efficiency of separating the photogenerated carriers but also reduces the photo-corrosion of NiCo_(2)S_(4).This study proposes an effective strategy for the design of TiO_(2)-based Z-scheme heterojunctions and the application of NiCo_(2)S_(4)in photocatalysis.展开更多
Artificial carbon fixation is a promising pathway for achieving the carbon cycle and environment remediation.However,the sluggish kinetics of oxygen evolution reaction(OER)and poor selectivity of CO_(2) reduction seri...Artificial carbon fixation is a promising pathway for achieving the carbon cycle and environment remediation.However,the sluggish kinetics of oxygen evolution reaction(OER)and poor selectivity of CO_(2) reduction seriously limited the overall conversion efficiencies of solar energy to chemical fuels.Herein,we demonstrated a facile and feasible strategy to rationally regulate the coordination environment and electronic structure of surface-active sites on both photoanode and cathode.More specifically,the defect engineering has been employed to reduce the coordination number of ultrathin FeNi catalysts decorated on BiVO4 photoanodes,resulting in one of the highest OER activities of 6.51 mA cm^(−2)(1.23 VRHE,AM 1.5G).Additionally,single-atom cobalt(II)phthalocyanine anchoring on the N-rich carbon substrates to increase Co–N coordination number remarkably promotes CO_(2) adsorption and activation for high selective CO production.Their integration achieved a record activity of 109.4μmol cm^(−2) h−1 for CO production with a faradaic efficiency of>90%,and an outstanding solar conversion efficiency of 5.41%has been achieved by further integrating a photovoltaic utilizing the sunlight(>500 nm).展开更多
This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production fr...This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions.The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical cha racterization.In particula r,the nominal composition(0-5 mol%Fe)was preserved as ascertained by ICP-MS analysis,and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction.The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis,Raman,and photoluminescence spectroscopies.2.5 mol%iron was found to be an optimal content to achieve a significant decrease in the band gap,enhance the concentration of oxygen vacancy defects,and increase the charge carrier lifetime.The photocatalytic activity of Fe-doped CeO_(2)prepared at different Fe contents with RM preparation was studied and compared with undoped CeO_(2).The optimal iron load was identified to be2.5 mol%,achieving the highest hydrogen production(7566μmol L-1after 240 min under visible light).Moreover,for comparison,the conventional precipitation(P)method was adopted to prepare iron containing CeO_(2)at the optimal content(2.5 mol%Fe).The Fe-doped CeO_(2)catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method.The optimal Fe-doped CeO_(2),prepared by the RM method,was stable for six reuse cycles.Moreover,the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D2O.The obtained results evidenced that hydrogen was produced from the reduction of H^(+)by the electrons promoted in the conduction band,while methanol was preferentially oxidized by the photogenerated positive holes.展开更多
Mo_(2)N has been identified as a highly promising carrier for electrocatalysis. However, its complex synthesis method, use of toxic gases, and serious effects on supported noble metals catalyst during hightemperature ...Mo_(2)N has been identified as a highly promising carrier for electrocatalysis. However, its complex synthesis method, use of toxic gases, and serious effects on supported noble metals catalyst during hightemperature sintering processes have seriously affected its hydrogen evolution reaction(HER) activity and stability. Here, we report an efficient strategy for synthesizing Mo_(2)N using the high temperature shock(HTS) method in just 1.67 s, while also uniformly loading Ru onto Mo_(2)N nanosheets. The HTS enables the homogeneous dispersion of the noble metal Ru, leading to an increased electrocatalytic activity,along with a strong charge transfer between Mo_(2)N and Ru. Ru/Mo2N exhibited an overpotential of 66 m V at 10 m A/cm^(2)in 1 mol/L KOH. In the evaluation of catalytic activity, Ru/Mo_(2)N demonstrates superiority over commercial Pt/C catalysts in terms of mass activity(1.71 A/mg Ru vs. 0.91 A/mg Pt at 200 m V) and turnover frequency(1.41 s^(-1)vs. 0.18 s^(-1)at 100 m V). This result provides a rational and effective pathway for the preparation of efficient electrocatalysts.展开更多
This work is devoted to the development of a low cost dimensionally stable anode with high oxygen evolution catalytic activity for practical applications.For this purpose,a Ti/SnO_(x)/MnO_(2) anode was fabricated thro...This work is devoted to the development of a low cost dimensionally stable anode with high oxygen evolution catalytic activity for practical applications.For this purpose,a Ti/SnO_(x)/MnO_(2) anode was fabricated through an innovative strategy involving Sn electrodeposition,oxidation,and MnO_(2)-layer preparation.The structure of the anode was characterized,and the oxygen evolution performance was evaluated in a H_(2)SO_(4) solution.The results show that compared with the Ti/SnO_(2)/MnO_(2) anode prepared by the conventional brushing-annealing process,the Ti/SnO_(x)/MnO_(2) anode fabricated through the innovative procedure exhibits a lower oxygen evolution potential and a nearly 40%longer accelerated lifespan.The superior oxygen evolution performance of the Ti/SnO_(x)/MnO_(2) anode is attributed to the distinctive SnO_(x) intermediate layer fabricated through Sn electrodeposition followed by oxidation,which indicates the great potential of the anode as a dimensionally stable anode for metal electrowinning and hydrogen production by electrolysis,etc.展开更多
Synergistic interplays involving multiple active centers originating from TiO2 nanotube layers(TNT)and ruthenium(Ru)species comprising of both single atoms(SAs)and nanoparticles(NPs)augment the alkaline hydrogen evolu...Synergistic interplays involving multiple active centers originating from TiO2 nanotube layers(TNT)and ruthenium(Ru)species comprising of both single atoms(SAs)and nanoparticles(NPs)augment the alkaline hydrogen evolution reaction(HER)by enhancing Volmer kinetics from rapid water dissociation and improving Tafel kinetics from efficient H*desorption.Atomic layer deposition of Ru with 50 process cycles results in a mixture of Ru SAs and 2.8-0.4 nm NPs present on TNT layers,and it emerges with the highest HER activity among all the electrodes synthesized.A detailed study of the Ti and Ru species using different high-resolution techniques confirmed the presence of Ti^(3+)states and the coexistence of Ru SAs and NPs.With insights from literature,the role of Ti^(3+),appropriate work functions of TNT layers and Ru,and the synergistic effect of Ru SAs and Ru NPs in improving the performance of alkaline HER were elaborated and justified.The aforementioned characteristics led to a remarkable performance by having 9mV onset potentials and 33 mV dec^(-1) of Tafel slopes and a higher turnover frequency of 1.72 H2 s^(-1) at 30 mV.Besides,a notable stability from 28 h staircase chronopotentiometric measurements for TNT@Ru surpasses TNT@Pt in comparison.展开更多
Activating both metal and lattice oxygen sites for efficient oxygen evolution reactions(OER)is a critical challenge.This study pioneers a novel approach,employing cobalt-nickel glycerate solid spheres(CoNi-G SSs)as se...Activating both metal and lattice oxygen sites for efficient oxygen evolution reactions(OER)is a critical challenge.This study pioneers a novel approach,employing cobalt-nickel glycerate solid spheres(CoNi-G SSs)as self-sacrificial templates to synthesize yolk-shell structured CoNi-G SSs@ZIF-67 nanospheres.The derived NiCo2S4@CoS2/MoS2 double-shelled hollow nanospheres integrate the adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM),enabling synergistic dual catalytic pathways.Nickel modulation facilitates active species reconstruction in NiCo_(2)S_(4),enhancing lattice oxygen activity and optimizing the LOM pathway.Characterization results indicate that anode activation triggered the redox processes of metal and lattice oxygen sites,involving the formation and re-filling of oxygen vacancies.Additionally,the CoS_(2)/MoS_(2) heterostructure enhances the AEM pathway,as supported by density functional theory calculations,which demonstrate optimized adsorption of intermediates for both hydrogen evolution reaction and OER.The assembled anion exchange membrane water splitting device can deliver a catalytic current of 500 mA cm^(-2) at 1.74 V under commercial catalytic operating conditions(1 mol L^(-1) KOH)for 150 h,with negligible degradation.This work provides important insights into the understanding of OER mechanisms and the design of high-performance water-splitting electrocatalysts,while also opening new avenues for developing multifunctional materials with multi-shell structures.展开更多
The oxygen evolution reaction(OER)has received widespread attention as an anodic reaction in various key electrochemical processes such as water splitting,carbon dioxide electroreduction,and ammonia electrosynthesis.T...The oxygen evolution reaction(OER)has received widespread attention as an anodic reaction in various key electrochemical processes such as water splitting,carbon dioxide electroreduction,and ammonia electrosynthesis.Therefore,there is an urgent need for efficient non-precious OER electrocatalysts to reduce the energy consumption and cost of these processes.NiFe layered double hydroxides(LDHs)with tunable electronic structure properties exhibit excellent OER intrinsic activity.However,their low electrical conductivity and tendency to agglomerate during electrocatalysis hinder their performance in OER.Herein,benefiting from the attraction of abundant negatively charged groups on the MXene surface towards Ni^(2+)and Fe^(3+),a heterostructure of highly conductive Mo_(2)CT_(x)MXene and NiFe alloy/LDH composite was prepared using a simple in-situ growth strategy.Combining experimental results and theoretical calculations,it is revealed that Mo_(2)CT_(x)MXene,as a substrate,significantly improves the OER performance of the NiFe-based catalyst by enhancing the electrical conductivity,mitigating the agglomeration,accelerating the oxidation and tuning the electronic structure.Consequently,in 1 M KOH electrolyte,the overpotential required to reach an OER current density of 10 mA cm^(-2)is only 230 mV,and the catalyst maintains high stability even after 3000 cyclic voltammetry cycles.This work expands the application of Mo_(2)CT_(x)MXene in electrocatalysis,and provides useful experience for the regulation of LDH-based electrocatalysts.展开更多
Lattice-strain engineering has demonstrated its capability to influence the electronic structure and catalytic performance of electrocatalysts.Herein,we present a facile method for inducing thermal strain in cobalt/mo...Lattice-strain engineering has demonstrated its capability to influence the electronic structure and catalytic performance of electrocatalysts.Herein,we present a facile method for inducing thermal strain in cobalt/molybdenum nitride rod-shaped structures(denoted Co/Mo_(2)N)via ammonia-assisted reduction,which effectively modulating the HER performance.The optimized Co/Mo_(2)N-500,characterized by 3%tensile lattice strain,demonstrates exceptional HER activity with lower overpotentials of140 mV and 184 mV at high current density of 1000 mA cm^(-2)in alkaline freshwater and seawater electrolytes,respectively.Co/Mo_(2)N also exhibits excellent long-term durability even at a high current density of 300 mA cm^(-2),surpassing its counterparts and benchmark Pt/C catalyst.Density functional theory calculations validate that the tensile strain optimizes the d-band states,water dissociation,and hydrogen adsorption kinetics of the strained Mo_(2)N in Co/Mo_(2)N,thereby improving its catalytic efficacy.This work provides valuable insights into controlling lattice strain to develop highly efficient electrocatalysts towards advanced electrocatalytic applications.展开更多
Developing efficient and stable photocatalysts for hydrogen generation still remains a huge challenge.Herein,we adopted Cynanchum fibers as a carbon source and substrate to construct a ternary hollow core-shell carbon...Developing efficient and stable photocatalysts for hydrogen generation still remains a huge challenge.Herein,we adopted Cynanchum fibers as a carbon source and substrate to construct a ternary hollow core-shell carbon microtubes@TiO_(2)/ZnIn_(2)S_(4)(denoted as CMT@TiO_(2)/ZnIn_(2)S_(4))for photothermal-assisted photocatalytic hydrogen evolution(PHE).For the catalyst system,ZnIn_(2)S_(4)is the main visible light absorber,TiO_(2) is introduced to form a heterojunction with ZnIn_(2)S_(4)to facilitate the separation of photogenerated carriers,and hollow CMT derived from Cynanchum fibers serves as a conductive scaffold and a photothermal core to elevate the surface temperature of the localized reaction system.Benefiting from the rationally designed multicomponents and microstructures,the photocatalyst proposed enhanced PHE activity of 9.71 mmol·g^(−1)·h^(−1),which was 30.3,2.7 and 1.5 times higher than those of binary CMT@TiO_(2),pristine ZnIn_(2)S_(4)and TiO_(2)/ZnIn_(2)S_(4)composite,respectively.The outperformed PHE activity of CMT@TiO_(2)/ZnIn_(2)S_(4)could be ascribed to the synergy of the formation of intimate heterointerface,the CMT-induced photothermal effect and the hierarchical core-shell architecture.This work provides a promising approach for constructing efficient and durable photocatalysts for H_(2) evolution.展开更多
In this work,for the first time,it is demonstrated that during the insertion/extraction of Na ions,the structural evolution at the Na_(4)site at a voltage range of 3-4 V is a key factor for the capacity decay of Na_(4...In this work,for the first time,it is demonstrated that during the insertion/extraction of Na ions,the structural evolution at the Na_(4)site at a voltage range of 3-4 V is a key factor for the capacity decay of Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP).Herein,a strategy of introducing columnar potassium ions at the Na_(4)site is proposed to address the aforementioned challenge.As a cathode material for sodium-ion batteries,the K_(0.12)Na_(3.88)Fe_(3)(PO_(4))_(2)P_(2)O_(7)/C(K-NFPP)composite enhances the reversibility of Na_(4)extraction.Specifically,the K-NFPP exhibits an initial discharge capacity of 107.8 mAh g^(-1)at a high current density of 5 C,with a capacity retention of 91.4% after 2000 cycles,outperforming the pristine NFPP material(81.1 m Ah g^(-1)and 67.1%).At 5 C,the K-NFPP also retains 81.5% of the reversible capacity at 0.1 C,whereas the NFPP only retains 68.3%.Moreover,the K-NFPP-based full-cell delivers an initial capacity of 110.1 m Ah g^(-1)at 1 C,with a capacity retention of 90% after 100 cycles.It is found that in comparison to K-doping of the Na1,Na2,and Na3 sites,K-doping at the Na4 site effectively optimizes the band gap and stabilizes the crystal structure,thereby reducing lattice changes of FeO_(6)evolution during Na^(+)insertion/extraction.As a result,the introduction of columnar potassium ions significantly enhances the capacity contribution of the Na_(4)site,optimizes reaction kinetics,and effectively mitigates the capacity decay of NFPP cathodes.It is believed that this study offers a new entry point for the application of NFPP in high-voltage sodium storage.展开更多
文摘As one of the most important industrially viable methods for carbon dioxide(CO_(2))utilization,methanol synthesis serves as a platform for production of green fuels and commodity chemicals.For sustainable methanol synthesis,In_(2)O_(3)is an ideal catalyst and has garnered significant attention.Herein,cubic In_(2)O_(3)nanoparticles were prepared via the precipitation method and evaluated for CO_(2)hydrogenation to produce methanol.During the initial 10 h of reaction,CO_(2)conversion gradually increased,accompanied by a slow decrease of methanol selectivity,and the reaction reached equilibrium after 10-20 h on stream.This activation and induction stage may be attributed to the sintering of In_(2)O_(3)nanoparticles and the creation of more oxygen vacancies on In_(2)O_(3)surfaces.Further experimental studies demonstrate that hydrogen induction created additional oxygen vacancies during the catalyst activation stage,enhancing the performance of In_(2)O_(3)catalyst for CO_(2)hydrogenation.Density functional theory calculations and microkinetic simulations further demonstrated that surfaces with higher oxygen vacancy coverages or hydroxylated surfaces formed during this induction period can enhance the reaction rate and increase the CO_(2)conversion.However,they predominantly promote the formation of CO instead of methanol,leading to reduced methanol selectivity.These predictions align well with the above-mentioned experimental observations.Our work thus provides an in-depth analysis of the induction stage of the CO_(2)hydrogenation process on In_(2)O_(3)nano-catalyst,and offers valuable insights for significantly improving the CO_(2)reactivity of In_(2)O_(3)-based catalysts while maintaining long-term stability.
文摘Hydrogen peroxide(H_(2)O_(2)),an environmentally friendly chemical with high value,is extensively used in industrial production and daily life.However,the traditional anthraquinone method for H_(2)O_(2) production is associated with a highly energy-consuming and heavily polluting process.Solor-driven photocatalytic evolution of H_(2)O_(2) is a promising,eco-friendly,and energy-efficient strategy that holds great potential to substitute the traditional approach.Here,a ternary photocatalyst,NiS/CdS/Halloysite nanotubes(NiS/CdS/HNTs)is designed and prepared with an earth-abundant clay mineral HNTs as the support and NiS as a co-catalyst.The pivotal roles of HNTs and NiS in the photocatalytic process are elucidated by experiments and theoretical calculations.HNTs serve as the carrier,which allows CdS to be uniformly dispersed onto its surface as small particles,increasing effective contact with H_(2)O and O_(2) for H_(2)O_(2) formation.Simultaneously,it resulted in the formation of a Schottky junction between NiS and CdS,which not only favors photogenerated charges separating efficiently but also provides a unidirectional path to transfer electrons.Consequently,the optimized NiS/CdS/HNTs composite demonstrates an H_(2)O_(2) evolution rate of 380.5μmol·g^(-1)·h^(-1) without adding any sacrificial agent or extra O_(2),nearly 5.0 times that of pure CdS.This work suggests a feasible idea for designing and developing highly active and low-cost solar energy catalytic composite materials.
文摘To verify the wear resistance and erosion resistance of Ti-doped Ta_(2)O_(5)coating(TTO),a series of TTOs were prepared by magnetron sputtering technology by controlling the power of the Ti target.The change of growth structure,microstructure,and tribological properties of TTOs with Ti target power was studied.After the erosion test,the variation of erosion damage behavior of TTOs with mechanical properties under different erosion conditions was further studied.The results show that the TTOs eliminate the roughness,voids,and defects in the material due to the mobility of the adsorbed atoms during the growth process,and a flat and dense smooth surface is obtained.Tribological tests show that the TTOs are mainly characterized by plastic deformation and microcrack wear mechanism.Higher Ti target power can improve the wear resistance of TTOs.Erosion test results reveal that the impact crater,furrow,micro-cutting,brittle spalling,and crack formation are the main wear mechanisms of the TTOs samples under erosion conditions.
文摘The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts.
基金supported by the National Key R&D Program of China(Nos.2022YFB3504000,2021YFE0115800)the National Natural Science Foundation of China(Nos.52103285,22275142,22293022,U22B6011)+2 种基金the Program of Introducing Talents of Dis-cipline to Universities-Plan 111 from the Ministry of Science and Technology and the Ministry of Education of China(Grant No.B20002)the Natural Science Foundation of Hubei Province(No.2023AFB605)the Dawning Program from Bureau of Science and Technology of Wuhan(No.2023020201020306).
文摘Constructing heterojunctions have received significant attention in photocatalysis because of their effi-cient separation of photogenerated carriers and improving light utilization efficiency.Bimetallic sulfides(e.g.NiCo_(2)S_(4))are applied in electrocatalysis and supercapacitors that can be coupled with TiO_(2)to form a heterojunction.Owing to the staggered energy band arrangement between TiO_(2)and NiCo_(2)S_(4),the es-tablishing of a Z-scheme heterojunction between them is expected to enhance the carrier separation effi-ciency and reduce the sulfide photo-corrosion.However,the application of NiCo_(2)S_(4)in photocatalysis and studies on the mechanism of the TiO_(2)/NiCo_(2)S_(4)Z-scheme heterojunction have seldom been reported.In this work,we obtained a hollow core-shell TiO_(2)/NiCo_(2)S_(4)Z-scheme photocatalyst through a solvothermal method for photocatalytic hydrogen evolution(PHE).The PHE rate of the optimized TiO_(2)/NiCo_(2)S_(4)-0.3 is 8.55 mmol g^(−1)h^(−1),approximately 34 times higher than pure TiO_(2),94 times higher than pure NiCo_(2)S_(4).The remarkable photocatalytic activity can be ascribed to the hollow structure and the in-situ constructed Z-scheme heterojunction.The photogenerated charge transfer mechanism is revealed by hydroxyl radical trapping experiments and electron paramagnetic resonance(EPR)characterization.The in-situ construc-tion of the Z-scheme heterojunction not only enhances the efficiency of separating the photogenerated carriers but also reduces the photo-corrosion of NiCo_(2)S_(4).This study proposes an effective strategy for the design of TiO_(2)-based Z-scheme heterojunctions and the application of NiCo_(2)S_(4)in photocatalysis.
基金supported by the National Natural Science Foundation of China(21832005,22072168,22002175)Major Program of the Lanzhou Institute of Chemical Physics,CAS(No.ZYFZFX-3)+1 种基金Major Science and Technology Projects in Gansu Province(22ZD6GA003)West Light Foundation of The Chinese Academy of Sciences(xbzg-zdsys-202209).
文摘Artificial carbon fixation is a promising pathway for achieving the carbon cycle and environment remediation.However,the sluggish kinetics of oxygen evolution reaction(OER)and poor selectivity of CO_(2) reduction seriously limited the overall conversion efficiencies of solar energy to chemical fuels.Herein,we demonstrated a facile and feasible strategy to rationally regulate the coordination environment and electronic structure of surface-active sites on both photoanode and cathode.More specifically,the defect engineering has been employed to reduce the coordination number of ultrathin FeNi catalysts decorated on BiVO4 photoanodes,resulting in one of the highest OER activities of 6.51 mA cm^(−2)(1.23 VRHE,AM 1.5G).Additionally,single-atom cobalt(II)phthalocyanine anchoring on the N-rich carbon substrates to increase Co–N coordination number remarkably promotes CO_(2) adsorption and activation for high selective CO production.Their integration achieved a record activity of 109.4μmol cm^(−2) h−1 for CO production with a faradaic efficiency of>90%,and an outstanding solar conversion efficiency of 5.41%has been achieved by further integrating a photovoltaic utilizing the sunlight(>500 nm).
基金funding from the"Ministero dell'Universitàe della Ricerca(MUR)"(Italy)under the"Dipartimento di Eccellenza 2018-2022"program.
文摘This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions.The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical cha racterization.In particula r,the nominal composition(0-5 mol%Fe)was preserved as ascertained by ICP-MS analysis,and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction.The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis,Raman,and photoluminescence spectroscopies.2.5 mol%iron was found to be an optimal content to achieve a significant decrease in the band gap,enhance the concentration of oxygen vacancy defects,and increase the charge carrier lifetime.The photocatalytic activity of Fe-doped CeO_(2)prepared at different Fe contents with RM preparation was studied and compared with undoped CeO_(2).The optimal iron load was identified to be2.5 mol%,achieving the highest hydrogen production(7566μmol L-1after 240 min under visible light).Moreover,for comparison,the conventional precipitation(P)method was adopted to prepare iron containing CeO_(2)at the optimal content(2.5 mol%Fe).The Fe-doped CeO_(2)catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method.The optimal Fe-doped CeO_(2),prepared by the RM method,was stable for six reuse cycles.Moreover,the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D2O.The obtained results evidenced that hydrogen was produced from the reduction of H^(+)by the electrons promoted in the conduction band,while methanol was preferentially oxidized by the photogenerated positive holes.
基金supported by the Beijing Natural Science Foundation (No. 2232061)the National Natural Science Foundation of China (No. 42377227)。
文摘Mo_(2)N has been identified as a highly promising carrier for electrocatalysis. However, its complex synthesis method, use of toxic gases, and serious effects on supported noble metals catalyst during hightemperature sintering processes have seriously affected its hydrogen evolution reaction(HER) activity and stability. Here, we report an efficient strategy for synthesizing Mo_(2)N using the high temperature shock(HTS) method in just 1.67 s, while also uniformly loading Ru onto Mo_(2)N nanosheets. The HTS enables the homogeneous dispersion of the noble metal Ru, leading to an increased electrocatalytic activity,along with a strong charge transfer between Mo_(2)N and Ru. Ru/Mo2N exhibited an overpotential of 66 m V at 10 m A/cm^(2)in 1 mol/L KOH. In the evaluation of catalytic activity, Ru/Mo_(2)N demonstrates superiority over commercial Pt/C catalysts in terms of mass activity(1.71 A/mg Ru vs. 0.91 A/mg Pt at 200 m V) and turnover frequency(1.41 s^(-1)vs. 0.18 s^(-1)at 100 m V). This result provides a rational and effective pathway for the preparation of efficient electrocatalysts.
文摘This work is devoted to the development of a low cost dimensionally stable anode with high oxygen evolution catalytic activity for practical applications.For this purpose,a Ti/SnO_(x)/MnO_(2) anode was fabricated through an innovative strategy involving Sn electrodeposition,oxidation,and MnO_(2)-layer preparation.The structure of the anode was characterized,and the oxygen evolution performance was evaluated in a H_(2)SO_(4) solution.The results show that compared with the Ti/SnO_(2)/MnO_(2) anode prepared by the conventional brushing-annealing process,the Ti/SnO_(x)/MnO_(2) anode fabricated through the innovative procedure exhibits a lower oxygen evolution potential and a nearly 40%longer accelerated lifespan.The superior oxygen evolution performance of the Ti/SnO_(x)/MnO_(2) anode is attributed to the distinctive SnO_(x) intermediate layer fabricated through Sn electrodeposition followed by oxidation,which indicates the great potential of the anode as a dimensionally stable anode for metal electrowinning and hydrogen production by electrolysis,etc.
基金support from the European Union Horizon 2020 program(project HERMES,nr.952184)the Ministry of Education,Youth and Sports of the Czech Republic for supporting CEMNAT(LM2023037)+1 种基金Czech-NanoLab(LM2023051)infrastructures for providing ALD,SEM,EDX,XPS,TEM,and XRDCzech Science Foundation(project 23-08019X,EXPRO).
文摘Synergistic interplays involving multiple active centers originating from TiO2 nanotube layers(TNT)and ruthenium(Ru)species comprising of both single atoms(SAs)and nanoparticles(NPs)augment the alkaline hydrogen evolution reaction(HER)by enhancing Volmer kinetics from rapid water dissociation and improving Tafel kinetics from efficient H*desorption.Atomic layer deposition of Ru with 50 process cycles results in a mixture of Ru SAs and 2.8-0.4 nm NPs present on TNT layers,and it emerges with the highest HER activity among all the electrodes synthesized.A detailed study of the Ti and Ru species using different high-resolution techniques confirmed the presence of Ti^(3+)states and the coexistence of Ru SAs and NPs.With insights from literature,the role of Ti^(3+),appropriate work functions of TNT layers and Ru,and the synergistic effect of Ru SAs and Ru NPs in improving the performance of alkaline HER were elaborated and justified.The aforementioned characteristics led to a remarkable performance by having 9mV onset potentials and 33 mV dec^(-1) of Tafel slopes and a higher turnover frequency of 1.72 H2 s^(-1) at 30 mV.Besides,a notable stability from 28 h staircase chronopotentiometric measurements for TNT@Ru surpasses TNT@Pt in comparison.
文摘Activating both metal and lattice oxygen sites for efficient oxygen evolution reactions(OER)is a critical challenge.This study pioneers a novel approach,employing cobalt-nickel glycerate solid spheres(CoNi-G SSs)as self-sacrificial templates to synthesize yolk-shell structured CoNi-G SSs@ZIF-67 nanospheres.The derived NiCo2S4@CoS2/MoS2 double-shelled hollow nanospheres integrate the adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM),enabling synergistic dual catalytic pathways.Nickel modulation facilitates active species reconstruction in NiCo_(2)S_(4),enhancing lattice oxygen activity and optimizing the LOM pathway.Characterization results indicate that anode activation triggered the redox processes of metal and lattice oxygen sites,involving the formation and re-filling of oxygen vacancies.Additionally,the CoS_(2)/MoS_(2) heterostructure enhances the AEM pathway,as supported by density functional theory calculations,which demonstrate optimized adsorption of intermediates for both hydrogen evolution reaction and OER.The assembled anion exchange membrane water splitting device can deliver a catalytic current of 500 mA cm^(-2) at 1.74 V under commercial catalytic operating conditions(1 mol L^(-1) KOH)for 150 h,with negligible degradation.This work provides important insights into the understanding of OER mechanisms and the design of high-performance water-splitting electrocatalysts,while also opening new avenues for developing multifunctional materials with multi-shell structures.
基金financially supported by the National Natural Science Foundation of China(No.22209049)Natural Science Foundation of Guangdong Province(No.2023A1515012804)Science and Technology Program of Guangzhou(No.2023A04J0674)。
文摘The oxygen evolution reaction(OER)has received widespread attention as an anodic reaction in various key electrochemical processes such as water splitting,carbon dioxide electroreduction,and ammonia electrosynthesis.Therefore,there is an urgent need for efficient non-precious OER electrocatalysts to reduce the energy consumption and cost of these processes.NiFe layered double hydroxides(LDHs)with tunable electronic structure properties exhibit excellent OER intrinsic activity.However,their low electrical conductivity and tendency to agglomerate during electrocatalysis hinder their performance in OER.Herein,benefiting from the attraction of abundant negatively charged groups on the MXene surface towards Ni^(2+)and Fe^(3+),a heterostructure of highly conductive Mo_(2)CT_(x)MXene and NiFe alloy/LDH composite was prepared using a simple in-situ growth strategy.Combining experimental results and theoretical calculations,it is revealed that Mo_(2)CT_(x)MXene,as a substrate,significantly improves the OER performance of the NiFe-based catalyst by enhancing the electrical conductivity,mitigating the agglomeration,accelerating the oxidation and tuning the electronic structure.Consequently,in 1 M KOH electrolyte,the overpotential required to reach an OER current density of 10 mA cm^(-2)is only 230 mV,and the catalyst maintains high stability even after 3000 cyclic voltammetry cycles.This work expands the application of Mo_(2)CT_(x)MXene in electrocatalysis,and provides useful experience for the regulation of LDH-based electrocatalysts.
基金supported by the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)Fundamental Research Funds for the Central Universities and Guangxi Key Laboratory of Information Materials and Guilin University of Electronic Technology,China(231002-K)+4 种基金Natural Science Foundation of Guangxi Zhuang Autonomous Region(2022GXNSFAA035467)Guangxi Science and Technology Program(Guike AD21220067)National Natural Science Foundation of China(22369002)Nationally Funded Postdoctoral Researcher Program(GZC20230756)China Postdoctoral Science Foundation(2024M750858)。
文摘Lattice-strain engineering has demonstrated its capability to influence the electronic structure and catalytic performance of electrocatalysts.Herein,we present a facile method for inducing thermal strain in cobalt/molybdenum nitride rod-shaped structures(denoted Co/Mo_(2)N)via ammonia-assisted reduction,which effectively modulating the HER performance.The optimized Co/Mo_(2)N-500,characterized by 3%tensile lattice strain,demonstrates exceptional HER activity with lower overpotentials of140 mV and 184 mV at high current density of 1000 mA cm^(-2)in alkaline freshwater and seawater electrolytes,respectively.Co/Mo_(2)N also exhibits excellent long-term durability even at a high current density of 300 mA cm^(-2),surpassing its counterparts and benchmark Pt/C catalyst.Density functional theory calculations validate that the tensile strain optimizes the d-band states,water dissociation,and hydrogen adsorption kinetics of the strained Mo_(2)N in Co/Mo_(2)N,thereby improving its catalytic efficacy.This work provides valuable insights into controlling lattice strain to develop highly efficient electrocatalysts towards advanced electrocatalytic applications.
基金supported by the National Natural Science Foundation of China(No.21701078)the PhD Initiation Foundation of Liaocheng University(No.318052140).
文摘Developing efficient and stable photocatalysts for hydrogen generation still remains a huge challenge.Herein,we adopted Cynanchum fibers as a carbon source and substrate to construct a ternary hollow core-shell carbon microtubes@TiO_(2)/ZnIn_(2)S_(4)(denoted as CMT@TiO_(2)/ZnIn_(2)S_(4))for photothermal-assisted photocatalytic hydrogen evolution(PHE).For the catalyst system,ZnIn_(2)S_(4)is the main visible light absorber,TiO_(2) is introduced to form a heterojunction with ZnIn_(2)S_(4)to facilitate the separation of photogenerated carriers,and hollow CMT derived from Cynanchum fibers serves as a conductive scaffold and a photothermal core to elevate the surface temperature of the localized reaction system.Benefiting from the rationally designed multicomponents and microstructures,the photocatalyst proposed enhanced PHE activity of 9.71 mmol·g^(−1)·h^(−1),which was 30.3,2.7 and 1.5 times higher than those of binary CMT@TiO_(2),pristine ZnIn_(2)S_(4)and TiO_(2)/ZnIn_(2)S_(4)composite,respectively.The outperformed PHE activity of CMT@TiO_(2)/ZnIn_(2)S_(4)could be ascribed to the synergy of the formation of intimate heterointerface,the CMT-induced photothermal effect and the hierarchical core-shell architecture.This work provides a promising approach for constructing efficient and durable photocatalysts for H_(2) evolution.
基金financial support from the National Natural Science Foundation of China(52272237,22279101 and 22172117)the Natural Science Foundation of Shaanxi(2020JC-41 and 2024JC-YBQN-0141)+2 种基金the Scientific Research Program Funded by the Education Department of Shaanxi Provincial Government(22JP056)the S&T Program of Energy Shaanxi Laboratory(ESLB202402)the Foshan Science and Technology Innovation Team Project(1920001004098)。
文摘In this work,for the first time,it is demonstrated that during the insertion/extraction of Na ions,the structural evolution at the Na_(4)site at a voltage range of 3-4 V is a key factor for the capacity decay of Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP).Herein,a strategy of introducing columnar potassium ions at the Na_(4)site is proposed to address the aforementioned challenge.As a cathode material for sodium-ion batteries,the K_(0.12)Na_(3.88)Fe_(3)(PO_(4))_(2)P_(2)O_(7)/C(K-NFPP)composite enhances the reversibility of Na_(4)extraction.Specifically,the K-NFPP exhibits an initial discharge capacity of 107.8 mAh g^(-1)at a high current density of 5 C,with a capacity retention of 91.4% after 2000 cycles,outperforming the pristine NFPP material(81.1 m Ah g^(-1)and 67.1%).At 5 C,the K-NFPP also retains 81.5% of the reversible capacity at 0.1 C,whereas the NFPP only retains 68.3%.Moreover,the K-NFPP-based full-cell delivers an initial capacity of 110.1 m Ah g^(-1)at 1 C,with a capacity retention of 90% after 100 cycles.It is found that in comparison to K-doping of the Na1,Na2,and Na3 sites,K-doping at the Na4 site effectively optimizes the band gap and stabilizes the crystal structure,thereby reducing lattice changes of FeO_(6)evolution during Na^(+)insertion/extraction.As a result,the introduction of columnar potassium ions significantly enhances the capacity contribution of the Na_(4)site,optimizes reaction kinetics,and effectively mitigates the capacity decay of NFPP cathodes.It is believed that this study offers a new entry point for the application of NFPP in high-voltage sodium storage.