期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rhodium complex-anchored and supramolecular polymer-grafted CdS nanoflower for enhanced photosynthesis of H_(2)O_(2) and photobiocatalytic C–H bond oxyfunctionalization
1
作者 Hongwei Jia Xiaoyang Yue +7 位作者 Yuying Hou Fei Huang Cuiyao Cao Feifei Jia Guanhua Liu Xiaobing Zheng Yunting Liu Yanjun Jiang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第10期73-82,共10页
Unspecific peroxygenases exhibit high activity for the selective oxyfunctionalization of inert C(sp3)–H bonds using only H_(2)O_(2) as a clean oxidant,while also exhibiting sensitivity to H_(2)O_(2) concentration.CdS... Unspecific peroxygenases exhibit high activity for the selective oxyfunctionalization of inert C(sp3)–H bonds using only H_(2)O_(2) as a clean oxidant,while also exhibiting sensitivity to H_(2)O_(2) concentration.CdS-based semiconductors are promising for the photosynthesis of H_(2)O_(2) owing to their adequately negative potential for oxygen reduction reaction via a proton-coupled electron transfer process,however,they suffer from fast H_(2)O_(2) decomposition on the surface of pristine CdS.Therefore,[Cp*Rh(bpy)H_(2)O]2+,a highly selective proton-coupled electron transfer catalyst,was anchored onto a supramolecular polymer-grafted CdS nanoflower to construct an efficient integrated photocatalyst for generating H_(2)O_(2),mitigating the surface issue of pristine CdS,increasing light absorption,accelerating photonic carrier separation,and enhancing oxygen reduction reaction selectivity to H_(2)O_(2).This photocatalyst promoted the light driven H_(2)O_(2) generation rate up to 1345μmol·L^(-1)·g^(-1)·h^(-1),which was 2.4 times that of pristine CdS.The constructed heterojunction photocatalyst could supply H_(2)O_(2) in situ for nonspecific peroxygenases to catalyze the C–H oxyfunctionalization of ethylbenzene,achieving a yield of 81%and an ee value of 99%under optimum conditions.A wide range of substrates were converted to the corresponding chiral alcohols using this photo-enzyme catalytic system,achieving the corresponding chiral alcohols in good yield(51%–88%)and excellent enantioselectivity(90%–99%ee). 展开更多
关键词 cadmium sulfide unspecific peroxygenases photobiocatalysis hydrogen peroxide oxyfunctionalization
原文传递
Biosynthesis of organic molecules via artificial cascade reactions based on cytochrome P450 monooxygenases 被引量:2
2
作者 Ren-Jie Li Zhongwei Zhang +2 位作者 Carlos G.Acevedo-Rocha Jing Zhao Aitao Li 《Green Synthesis and Catalysis》 2020年第1期52-59,共8页
Cytochrome P450 monooxygenases(P450s)play crucial roles in the oxyfunctionalization of non-activated hydrocarbons,thus bridging the gap between simple molecules and high value-added fine chemicals.The introduction of ... Cytochrome P450 monooxygenases(P450s)play crucial roles in the oxyfunctionalization of non-activated hydrocarbons,thus bridging the gap between simple molecules and high value-added fine chemicals.The introduction of P450s into artificially designed cascade reactions provides an exciting opportunity to accomplish challenging reactions and access organic compounds that cannot be achieved by traditional chemical catalysts or by natural metabolic pathways.The main objective of this review is to provide an overview of different types of artificially designed multi-step cascades in which P450s are involved as key catalysts in the biosynthesis of various organic molecules.The different efforts include in vitro multi-enzymatic biocatalytic cascades,in vivo biocatalytic cascades as well as chemo-enzymatic hybrid cascades.Overall,this work provides an overview of cascade reactions involving P450s with various potential applications for the industrial production of food,cosmetics,polymers and pharmaceuticals. 展开更多
关键词 Cascade reaction P450 monooxygenase oxyfunctionalization BIOCATALYSIS Artificial pathway
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部