In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic ...In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic electrode exhibits no template requirement,freedom design,low-cost,robust,anticorrosion,lightweight,and micro-nano porous characteristics.It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area,wetting performance,and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction(OER)catalysis process.Density functional theory(DFT)calculation interprets the origin of high activity of NiFe(PO_(3))O(OH)and demonstrates that the implantation of the–PO_(3)can effectively bind the 3d orbital of Ni in NiFe(PO_(3))O(OH),lead to the weak adsorption of intermediate,make electron more active to improve the conductivity,thereby lowing the transform free energy of*O to*OOH.The water oxidization performance of as-prepared 3D NiFe(PO_(3))O(OH)hollow tubular(HT)lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes,especially for high current OER electrodes.This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes.展开更多
A novel Si-Al alloyed press hardening steel(PHS)with the ferrite(α)-austenite(γ)-martensite(α')triplex microstructure was developed to have marginal oxidization after the hot forming in air,and the resultant ul...A novel Si-Al alloyed press hardening steel(PHS)with the ferrite(α)-austenite(γ)-martensite(α')triplex microstructure was developed to have marginal oxidization after the hot forming in air,and the resultant ultimate tensile strength(UTS)of 1620 MPa and total elongation(TE)of 14%were achieved simultaneously at reduced density.Both performances are superior to the existing PHSs.Particularly,the baking at 170°C leads to remarkable increases in both strength and ductility together with the transition of tensile fracture from the brittle interfacial cracking to the ductile one.This is because austenite and ferrite were hardened due to the segregation of C atoms into geometry necessary dislocations(GNDs)but martensite softened due to the loss of supersaturated C atoms during the baking.Atomic probe tomography examination reveals that some C atoms segregated to theα/α'interfaces during the baking for increased cohesive energy of the phase interface,thus hindering the interfacial cracking.In addition,the employed Al/Si alloying affords stronger oxidization resistance than both Al/Cr and Si/Cr because they are more rapidly oxidized than Cr to form the dense Al_(2) O_(3)/SiO_(2) layers for earlier protection.展开更多
The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% CODcr, raise pH from 0.7 to 5.5. The CODcr r...The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% CODcr, raise pH from 0.7 to 5.5. The CODcr removal efficiency by biochemical process can be more than 80%. During a half year抯 operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge stan-dards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization.展开更多
The short-term effects of temperature and free ammonia (FA) on ammonium oxidization were investigated in this study by operating several batch tests with two different partial nitrification aggregates, formed as eithe...The short-term effects of temperature and free ammonia (FA) on ammonium oxidization were investigated in this study by operating several batch tests with two different partial nitrification aggregates, formed as either granules or flocs. The results showed that the rate of ammonium oxidation in both cultures increased significantly as temperature increased from 10 to 30 °C. The specific ammonium oxidation rate with the granules was 2-3 times higher than that with flocs at the same temperature. Nitrification at various FA concentrations and temperatures combination exhibited obvious inhibition in ammonium oxidation rate when FA was 90 mg·L 1 and tempera- ture dropped to 10 °C in the two systems. However, the increase in substrate oxidation rate of ammonia at 30 °C was observed. The results suggested that higher reaction temperature was helpful to reduce the toxicity of FA. Granules appeared to be more tolerant to FA attributed to the much fraction of ammonia oxidizing bacteria (AOB) and higher resistance to the transfer of ammonia into the bacterial aggregates, whereas in the floc system, the bacteria distributed throughout the entire aggregate. These results may contribute to the applicability of the nitrifying granules in wastewater treatment operated at high ammonium concentration.展开更多
Effects of reaction parameter on yield of benzaldehyde produced from toluene oxidization using hydrogen peroxide in subcritical water are investigated. The experimental results show that if the molar ratio of hydrogen...Effects of reaction parameter on yield of benzaldehyde produced from toluene oxidization using hydrogen peroxide in subcritical water are investigated. The experimental results show that if the molar ratio of hydrogen peroxide to toluene is controlled within a reasonable range, the by-products may be neglected. The optimum technology of toluene oxidization to benzaldehyde is reaction time 60 min, reaction temperature 350℃, molar ratio of hydrogen peroxide to toluene 3.5. The yield of benzaldehyde can reach 17.2 % under the optimum condition. Research results of chemical reaction kinetics show that the consecutive reaction consists of two first-order reaction, and activation energy of these two reactions are 89 kJ·mol^-1 and 76 kJ·mol^-1 respectively,展开更多
Three approaches of treating carbon nanotubes (CNTs) including acid treatment, air oxidization and heat treatment at high temperature were studied to enhance the crystalline degree of carbon nanotubes. High temperatur...Three approaches of treating carbon nanotubes (CNTs) including acid treatment, air oxidization and heat treatment at high temperature were studied to enhance the crystalline degree of carbon nanotubes. High temperature heat-treatment elevates the crystalline degree of carbon nanotubes. Acid treatment removes parts of amorphous carbonaceous matter through its oxidization effect. Air oxidization disperses carbon nanotubes and amorphous carbonaceous matter. The treatment of combining acid treatment with heat-treatment further elevates the crystalline degree of carbon nanotubes comparing with acid treatment or heat-treatment. The combination of the three treatments creates the thorough effects of enhancing the crystalline degree of carbon nanotubes.展开更多
Due to the dispersed distribution of the titanium component in various mineral phases and very fine grain size, it is difficult to recover the titanium component from the slag. In order to utilize titanium resources, ...Due to the dispersed distribution of the titanium component in various mineral phases and very fine grain size, it is difficult to recover the titanium component from the slag. In order to utilize titanium resources, selective enriching and selective growing of the titanium component from the molten slag is expected. In this paper, the selection of the best titanium enrichment phase and the effect of oxidization on the enrichment of titanium by blowing air into the molten slag were studied. The results showed that through oxidizing the slag, the content of the perovskite phase increases while that of the other titanium-bearing mineral phases decreases until they disappear. Most titania resources were enriched into the perovskite phase and increase in size. The process of enrichment and growth is easily carried out.展开更多
The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attrm^ted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectiv...The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attrm^ted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectively oxidize and remove NOx and SO2 in the flue gas. The experimental results showed that TiO2 could improve the oxidation efficiency of SO2 in the case of applying plasma while having a negative effect on the oxidation process of NO and NOx. With the addition of NH3, the oxidation rates of NOx, NO and SO2 were slightly increased. However, the effect of adding NH3 on NOx oxidation was negative when the temperature was above 200℃.展开更多
In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measur...In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6'3H20 into the NaaPO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of Kg(FeCN)63H20 increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275℃. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.展开更多
In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditio...In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditions on the phenol removal rate were investigated. The test results showed that when the phenol concentration was 0.1 g/L, the ozone-containing air flow rate was 0.05 m3/b, the ozone concentration was 3.58 mg/L, the pH value was 7.5, and the treating time was 30 minutes, the phenol removal rate reached 99%, with the COD removal rate equating to 55%. The property of treated wastewater could comply with the first-grade effluent specified in "Comprehensive Wastewater Discharge Standard" (GB8978--1996).展开更多
Physical modeling,numerical simulation and field case analysis were carried out to find out the subsurface thermal oxidation state,thermal oxidation front characteristics and production dynamic characteristics of high...Physical modeling,numerical simulation and field case analysis were carried out to find out the subsurface thermal oxidation state,thermal oxidation front characteristics and production dynamic characteristics of high pressure air injection thermal oxidation miscible flooding technology.The lighter the composition and the lower the viscosity of the crude oil,the lower the fuel consumption and the combustion temperature are.The thermal oxidation front of light oil and volatile oil can advance stably,and a medium-temperature thermal oxidation stable displacement state can be formed in the light oil reservoir under high pressure conditions.With strong thermal gasification and distillation,light oil and volatile oil are likely to form a single phase zone of gasification and distillation with thermal flue gas at the high-temperature and high-pressure heat front,finally,an air-injection thermal miscible front.In light oil reservoirs,the development process of high-pressure air-injection thermal miscible flooding can be divided into three stages:boosting pressure stage,low gas-oil ratio and high-efficiency stable production stage and high gas-oil ratio production stage.Approximately 70%of crude oil is produced during the boosting pressure stage and low gas-oil ratio high-efficiency and stable production stage.展开更多
For the purpose of obtaining small molecular and oxygen-containing aromatic compounds, taking a toluene-extracted coal pitch as the research object, the oxidation of coal-pitch by ozone (03) in formic acid was studi...For the purpose of obtaining small molecular and oxygen-containing aromatic compounds, taking a toluene-extracted coal pitch as the research object, the oxidation of coal-pitch by ozone (03) in formic acid was studied. The coal-pitch sample and the oxidized pitch residue were characterized by elementary analysis and Fourier transform infrared spectroscopy (FTIR), while the small molecular products were analyzed by a gas chromatography-mass spectrometer (GC-MS). The results show that the highest oxygen content of oxidized coal pitch had been acquired at a reaction temperature of 50℃C, an 03 flow rate of 6300 mg/h and a reaction time of 4 h. Quite a lot of hydroxyls and carbonyls were introduced into the structure of the oxidized coal-pitch, while the small molecules produced mainly involve nonpolar aro- matic compounds, aromatic anhydride and quinone compounds. It is speculated that the mechanism is direct electrophilic oxidation in which the molecules of 03 directly attack the aromatic ring at its carbon atoms with high electron density, and then generate hydroxyl or carbonyl until the aromatic ring cracks. This study shows that 03 can make the fused aromatic ring of coal-pitch become oxidized and depoly- merized, and hence the ozonization of coal-pitch can be a potential method for obtaining oxygen- containing aromatic compounds.展开更多
Rice planting(RP)is significant to methane(CH4_(4))emissions from paddy fields,but its effect on the relative contribution of the acetoclastic methanogenesis to total CH4_(4) production(F_(ac))and the fraction of CH4_...Rice planting(RP)is significant to methane(CH4_(4))emissions from paddy fields,but its effect on the relative contribution of the acetoclastic methanogenesis to total CH4_(4) production(F_(ac))and the fraction of CH4_(4) oxidized(Fox)is poorly understood.To quantify the responses of the F_(ac) and Fox to RP,we investigated CH4_(4) fluxes,CH4_(4) production and oxidation potentials,dissolved CH4_(4) concentrations,and their stable carbon isotopes in a flooded paddy soil.The mcrA and pmoA gene copies were also determined by quantitative polymerase chain reaction(qPCR).Compared with the unplanted soil(control,CK),the seasonal CH4_(4) emissions from the planted soil were significantly enhanced,13.6 times,resulting in large decreases in the CH4_(4) concentrations in the soil solution.This indicated that much more CH4_(4) was released into the atmosphere by the RP than was stored in the soils.Acetoclastic methanogenesis became more important from the tillering stage(TS)to the ripening stage(RS)for the CK,with F_(ac) values increased from 17%-20% to 46%-55%.With RP,the F_(ac) values were enhanced by 10%-20%,and it significantly increased the copy numbers of the mcrA gene at the four rice stages(TS,booting stage(BS),grain-filling stage(GS),and RS).Furthermore,the effect of the RP on the abundance of the mcrA gene was highly concurrent with the effect on the F_(ac) values.At the TS,the Fox values at the soil-water interface were around 50%-75% for the CK,being 15%-20% lower than those of the RP in the rhizosphere.It increased to 65%-100% at the GS,but was reduced by 20%-30% after the RP.These differences might be because the copy numbers of the pmoA gene were significantly raised at the TS while lowered at the GS by the RP.This was further demonstrated by the strong correlations between the effect of the RP on the abundance of the pmoA gene and the effect on the Fox values.These findings suggest that RP markedly impacts on the abundances of the mcrA and pmoA genes,affecting the pathway of CH4_(4) production and the fraction of CH4_(4) oxidization,respectively.展开更多
Yin-yang theory and Wuxing theory are the core parts of Traditional Chinese Medicine(TCM). Most of researches on Wuxing theory are based on the paradigm of TCM or Traditional Chinese Culture. It is an evitable chall...Yin-yang theory and Wuxing theory are the core parts of Traditional Chinese Medicine(TCM). Most of researches on Wuxing theory are based on the paradigm of TCM or Traditional Chinese Culture. It is an evitable challenge to interpret Wuxing theory in the term of biomolecular, biochemistry, stem cell and so on. The oxidation of glucose is the important pathway in cell and there are five basic factors which will be responsible for the undergoing of this reaction. The relationships among these factors are similar to Wuxing theory just like inter-promotion and inter-restraint. So, this understanding on Wuxing theory maybe take some advancement for the modernization of TCM.展开更多
The effects of Pd loading, cerium content, the special surface area of the support and calcination temperature on the catalytic properties of Pd-loaded zirconia-ceria mixed oxide were studied.The results show that loa...The effects of Pd loading, cerium content, the special surface area of the support and calcination temperature on the catalytic properties of Pd-loaded zirconia-ceria mixed oxide were studied.The results show that loading Pd and increasing cerium content in the mixed oxides can enhance the catalytic activity.There is a little effect of calcination temperature on catalytic activities, implying that these catalysts are effective with good thermal stability.展开更多
The oxidization resistance of the Ni76Cr19A1Ti alloy was studied by a static oxidization experiment at 600-800℃. The results show that the oxidation behavior of the alloy can be explained by a kinetic equation: (△...The oxidization resistance of the Ni76Cr19A1Ti alloy was studied by a static oxidization experiment at 600-800℃. The results show that the oxidation behavior of the alloy can be explained by a kinetic equation: (△m/S)2 = Kpt + C, where Kp is a kinetic constant of the nickel-base alloy. The higher the experimental temperature, the higher the value of Kp. It is discovered that the microstructure of the oxide scales is compact and the thickness of it is less than 10 μm The oxidization of the alloy is in the first grade. It is also found that the oxide scales are mainly composed of Cr2O3 and TiO2. Chrome and titanium react more easily with oxygen at temperatures under the operating mode.展开更多
High-performance catalyst is significant for the sustainable hydrogen(H_(2))production by electrocatalytic water splitting.Optimizing porous structure and active groups of substrate can promote the interaction of subs...High-performance catalyst is significant for the sustainable hydrogen(H_(2))production by electrocatalytic water splitting.Optimizing porous structure and active groups of substrate can promote the interaction of substrate and active metal particles,enabling excellent catalytic properties and stability.Herein,the optimization strategy of delignification and 2,2,6,6-tetramethylpyperidine-1-oxyl(TEMPO)oxidization was developed to modify the porous structure and active groups of wood substrate,and Ru doped Co/CO_(2)P(Ru-Co/CO_(2)P)nanoparticles were encapsulated into the optimized wood carbon substrate(Ru-Co/CO_(2)P@TDCW)for the efficient pH-universal hydrogen evolution reaction(HER).The nanopore and carboxyl groups were produced by delignification and TEMPO oxidation,which accelerated the dispersion and deposition of Ru-Co/CO_(2)P nanoparticles.The RuCo alloy and RuCoP nanoparticles were produced with the doping of Ru,and more Ru-Co/CO_(2)P nanoparticles were anchored by the delignified and TEMPO oxidized wood carbon(TDCW).As anticipated,the Ru-Co/CO_(2)P@TDCW catalyst exhibited excellent pH-universal HER activity,and only 16.6,93,and 43 mV of overpotentials were required to deliver the current density of 50 mA cm^(-2)in alkaline,neutral,and acidic electrolytes,outperforming the noble Pt/C/TDCW catalyst significantly.In addition,Ru-Co/CO_(2)P@TDCW catalyst presented excellent stability for more than 600 h working at 100 mA cm^(-2)in alkaline solution(1.0 M KOH).Density function theory(DFT)results revealed that energy barriers for the dissociation of H_(2)O and the formation of H_(2)were decreased by the doping of Ru,and the conductivity and efficiency of electron migration were also enhanced.This work demonstrated a strategy to optimize the structure and properties of wood carbon substrate,providing a promising strategy to synthesize high-efficiency catalyst for H_(2)production.展开更多
Ethylene glycol(EG)is a biomass derivative of polyethylene terephthalate(PET),and its electrocatalytic conversion into high-value chemicals has sparked widespread interest.This study reviews the most recent research d...Ethylene glycol(EG)is a biomass derivative of polyethylene terephthalate(PET),and its electrocatalytic conversion into high-value chemicals has sparked widespread interest.This study reviews the most recent research development in electrocatalysis-based EG to glycolic acid(GA)conversion.Firstly,the strategies and research results of modulating the electronic structure of catalysts for efficient selective GA production from EG are reviewed.Second,by reviewing the data of in-situ Fourier transform infrared spectroscopy and in-situ electrochemically attenuated total reflection surface enhanced infrared absorption spectroscopy,the reaction pathway and catalytic mechanism of EG partial oxidation to GA were clarified.Finally,the design and regulation of catalysts for selective oxidation of EG by electrocatalysis in the future are prospected.展开更多
This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two exp...This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.展开更多
It has been reported that the PI3K/AKT signaling pathway plays a key role in the pathogenesis of ischemic stroke.As a result,the development of drugs targeting the PI3K/AKT signaling pathway has attracted increasing a...It has been reported that the PI3K/AKT signaling pathway plays a key role in the pathogenesis of ischemic stroke.As a result,the development of drugs targeting the PI3K/AKT signaling pathway has attracted increasing attention from researchers.This article reviews the pathological mechanisms and advancements in research related to the signaling pathways in ischemic stroke,with a focus on the PI3K/AKT signaling pathway.The key findings include the following:(1)The complex pathological mechanisms of ischemic stroke can be categorized into five major types:excitatory amino acid toxicity,Ca^(2+)overload,inflammatory response,oxidative stress,and apoptosis.(2)The PI3K/AKT-mediated signaling pathway is closely associated with the occurrence and progression of ischemic stroke,which primarily involves the NF-κB,NRF2,BCL-2,mTOR,and endothelial NOS signaling pathways.(3)Natural products,including flavonoids,quinones,alkaloids,phenylpropanoids,phenols,terpenoids,and iridoids,show great potential as candidate substances for the development of innovative anti-stroke medications.(4)Recently,novel therapeutic techniques,such as electroacupuncture and mesenchymal stem cell therapy,have demonstrated the potential to improve stroke outcomes by activating the PI3K/AKT signaling pathway,providing new possibilities for the treatment and rehabilitation of patients with ischemic stroke.Future investigations should focus on the direct regulatory mechanisms of drugs targeting the PI3K/AKT signaling pathway and their clinical translation to develop innovative treatment strategies for ischemic stroke.展开更多
基金the National Natural Science Foundation of China(52001173&52100190)the Jiangsu Specially-Appointed Professor Program,Natural Science Foundation of Jiangsu Province(BK20200970&BK20210834)+2 种基金General Project of Natural Science Research in Jiangsu Colleges and Universities(20KJB530011&20KJB430046)Research Fund of Nantong University(03083054)National College Students'innovation and entrepreneurship training program(202110304019Z)for financial support.
文摘In this article,we report a 3D NiFe phosphite oxyhydroxide plastic electrode using high-resolution digital light processing(DLP)3D-printing technology via induced chemical deposition method.The as-prepared 3D plastic electrode exhibits no template requirement,freedom design,low-cost,robust,anticorrosion,lightweight,and micro-nano porous characteristics.It can be drawn to the conclusion that highly oriented open-porous 3D geometry structure will be beneficial for improving surface catalytic active area,wetting performance,and reaction–diffusion dynamics of plastic electrodes for oxygen evolution reaction(OER)catalysis process.Density functional theory(DFT)calculation interprets the origin of high activity of NiFe(PO_(3))O(OH)and demonstrates that the implantation of the–PO_(3)can effectively bind the 3d orbital of Ni in NiFe(PO_(3))O(OH),lead to the weak adsorption of intermediate,make electron more active to improve the conductivity,thereby lowing the transform free energy of*O to*OOH.The water oxidization performance of as-prepared 3D NiFe(PO_(3))O(OH)hollow tubular(HT)lattice plastic electrode has almost reached the state-of-the-art level compared with the as-reported large-current-density catalysts or 3D additive manufactured plastic/metal-based electrodes,especially for high current OER electrodes.This work breaks through the bottleneck that plagues the performance improvement of low-cost high-current electrodes.
基金financially supported by the National Natu-ral Science Foundation of China(Nos.52233018 and 51831002)。
文摘A novel Si-Al alloyed press hardening steel(PHS)with the ferrite(α)-austenite(γ)-martensite(α')triplex microstructure was developed to have marginal oxidization after the hot forming in air,and the resultant ultimate tensile strength(UTS)of 1620 MPa and total elongation(TE)of 14%were achieved simultaneously at reduced density.Both performances are superior to the existing PHSs.Particularly,the baking at 170°C leads to remarkable increases in both strength and ductility together with the transition of tensile fracture from the brittle interfacial cracking to the ductile one.This is because austenite and ferrite were hardened due to the segregation of C atoms into geometry necessary dislocations(GNDs)but martensite softened due to the loss of supersaturated C atoms during the baking.Atomic probe tomography examination reveals that some C atoms segregated to theα/α'interfaces during the baking for increased cohesive energy of the phase interface,thus hindering the interfacial cracking.In addition,the employed Al/Si alloying affords stronger oxidization resistance than both Al/Cr and Si/Cr because they are more rapidly oxidized than Cr to form the dense Al_(2) O_(3)/SiO_(2) layers for earlier protection.
文摘The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% CODcr, raise pH from 0.7 to 5.5. The CODcr removal efficiency by biochemical process can be more than 80%. During a half year抯 operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge stan-dards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization.
基金Supported by the Project of Scientific Research Base and Scientific Innovation Platform of Beijing Municipal Education CommissionNational Key Science and Technology Special Projects
文摘The short-term effects of temperature and free ammonia (FA) on ammonium oxidization were investigated in this study by operating several batch tests with two different partial nitrification aggregates, formed as either granules or flocs. The results showed that the rate of ammonium oxidation in both cultures increased significantly as temperature increased from 10 to 30 °C. The specific ammonium oxidation rate with the granules was 2-3 times higher than that with flocs at the same temperature. Nitrification at various FA concentrations and temperatures combination exhibited obvious inhibition in ammonium oxidation rate when FA was 90 mg·L 1 and tempera- ture dropped to 10 °C in the two systems. However, the increase in substrate oxidation rate of ammonia at 30 °C was observed. The results suggested that higher reaction temperature was helpful to reduce the toxicity of FA. Granules appeared to be more tolerant to FA attributed to the much fraction of ammonia oxidizing bacteria (AOB) and higher resistance to the transfer of ammonia into the bacterial aggregates, whereas in the floc system, the bacteria distributed throughout the entire aggregate. These results may contribute to the applicability of the nitrifying granules in wastewater treatment operated at high ammonium concentration.
文摘Effects of reaction parameter on yield of benzaldehyde produced from toluene oxidization using hydrogen peroxide in subcritical water are investigated. The experimental results show that if the molar ratio of hydrogen peroxide to toluene is controlled within a reasonable range, the by-products may be neglected. The optimum technology of toluene oxidization to benzaldehyde is reaction time 60 min, reaction temperature 350℃, molar ratio of hydrogen peroxide to toluene 3.5. The yield of benzaldehyde can reach 17.2 % under the optimum condition. Research results of chemical reaction kinetics show that the consecutive reaction consists of two first-order reaction, and activation energy of these two reactions are 89 kJ·mol^-1 and 76 kJ·mol^-1 respectively,
文摘Three approaches of treating carbon nanotubes (CNTs) including acid treatment, air oxidization and heat treatment at high temperature were studied to enhance the crystalline degree of carbon nanotubes. High temperature heat-treatment elevates the crystalline degree of carbon nanotubes. Acid treatment removes parts of amorphous carbonaceous matter through its oxidization effect. Air oxidization disperses carbon nanotubes and amorphous carbonaceous matter. The treatment of combining acid treatment with heat-treatment further elevates the crystalline degree of carbon nanotubes comparing with acid treatment or heat-treatment. The combination of the three treatments creates the thorough effects of enhancing the crystalline degree of carbon nanotubes.
基金This work was financially supported by the National Natural Science Foundation of China (No.50234040)
文摘Due to the dispersed distribution of the titanium component in various mineral phases and very fine grain size, it is difficult to recover the titanium component from the slag. In order to utilize titanium resources, selective enriching and selective growing of the titanium component from the molten slag is expected. In this paper, the selection of the best titanium enrichment phase and the effect of oxidization on the enrichment of titanium by blowing air into the molten slag were studied. The results showed that through oxidizing the slag, the content of the perovskite phase increases while that of the other titanium-bearing mineral phases decreases until they disappear. Most titania resources were enriched into the perovskite phase and increase in size. The process of enrichment and growth is easily carried out.
文摘The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attrm^ted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectively oxidize and remove NOx and SO2 in the flue gas. The experimental results showed that TiO2 could improve the oxidation efficiency of SO2 in the case of applying plasma while having a negative effect on the oxidation process of NO and NOx. With the addition of NH3, the oxidation rates of NOx, NO and SO2 were slightly increased. However, the effect of adding NH3 on NOx oxidation was negative when the temperature was above 200℃.
基金supported by the National Basic Research Priorities Program of China (No.2007CB936601)the National Natural Science Foundation of China (Nos.10876017 and 91023037)
文摘In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6'3H20 into the NaaPO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of Kg(FeCN)63H20 increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275℃. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.
文摘In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditions on the phenol removal rate were investigated. The test results showed that when the phenol concentration was 0.1 g/L, the ozone-containing air flow rate was 0.05 m3/b, the ozone concentration was 3.58 mg/L, the pH value was 7.5, and the treating time was 30 minutes, the phenol removal rate reached 99%, with the COD removal rate equating to 55%. The property of treated wastewater could comply with the first-grade effluent specified in "Comprehensive Wastewater Discharge Standard" (GB8978--1996).
基金Supported by the Science and Technology Project of PetroChina Exploration and Production Company.
文摘Physical modeling,numerical simulation and field case analysis were carried out to find out the subsurface thermal oxidation state,thermal oxidation front characteristics and production dynamic characteristics of high pressure air injection thermal oxidation miscible flooding technology.The lighter the composition and the lower the viscosity of the crude oil,the lower the fuel consumption and the combustion temperature are.The thermal oxidation front of light oil and volatile oil can advance stably,and a medium-temperature thermal oxidation stable displacement state can be formed in the light oil reservoir under high pressure conditions.With strong thermal gasification and distillation,light oil and volatile oil are likely to form a single phase zone of gasification and distillation with thermal flue gas at the high-temperature and high-pressure heat front,finally,an air-injection thermal miscible front.In light oil reservoirs,the development process of high-pressure air-injection thermal miscible flooding can be divided into three stages:boosting pressure stage,low gas-oil ratio and high-efficiency stable production stage and high gas-oil ratio production stage.Approximately 70%of crude oil is produced during the boosting pressure stage and low gas-oil ratio high-efficiency and stable production stage.
基金financially supported by the Key Project of Science and Technology of Universities of Henan Province (No.14A530003)the Key Project of Science and Technology of Henan Province (No.152102310090)
文摘For the purpose of obtaining small molecular and oxygen-containing aromatic compounds, taking a toluene-extracted coal pitch as the research object, the oxidation of coal-pitch by ozone (03) in formic acid was studied. The coal-pitch sample and the oxidized pitch residue were characterized by elementary analysis and Fourier transform infrared spectroscopy (FTIR), while the small molecular products were analyzed by a gas chromatography-mass spectrometer (GC-MS). The results show that the highest oxygen content of oxidized coal pitch had been acquired at a reaction temperature of 50℃C, an 03 flow rate of 6300 mg/h and a reaction time of 4 h. Quite a lot of hydroxyls and carbonyls were introduced into the structure of the oxidized coal-pitch, while the small molecules produced mainly involve nonpolar aro- matic compounds, aromatic anhydride and quinone compounds. It is speculated that the mechanism is direct electrophilic oxidation in which the molecules of 03 directly attack the aromatic ring at its carbon atoms with high electron density, and then generate hydroxyl or carbonyl until the aromatic ring cracks. This study shows that 03 can make the fused aromatic ring of coal-pitch become oxidized and depoly- merized, and hence the ozonization of coal-pitch can be a potential method for obtaining oxygen- containing aromatic compounds.
基金financially supported by the National Key Research and Development Program of China(No.2017YFD 0300105)the National Natural Science Foundation of China(Nos.41571232,41671241,and 41877325)+1 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(CASmember No.2018349)。
文摘Rice planting(RP)is significant to methane(CH4_(4))emissions from paddy fields,but its effect on the relative contribution of the acetoclastic methanogenesis to total CH4_(4) production(F_(ac))and the fraction of CH4_(4) oxidized(Fox)is poorly understood.To quantify the responses of the F_(ac) and Fox to RP,we investigated CH4_(4) fluxes,CH4_(4) production and oxidation potentials,dissolved CH4_(4) concentrations,and their stable carbon isotopes in a flooded paddy soil.The mcrA and pmoA gene copies were also determined by quantitative polymerase chain reaction(qPCR).Compared with the unplanted soil(control,CK),the seasonal CH4_(4) emissions from the planted soil were significantly enhanced,13.6 times,resulting in large decreases in the CH4_(4) concentrations in the soil solution.This indicated that much more CH4_(4) was released into the atmosphere by the RP than was stored in the soils.Acetoclastic methanogenesis became more important from the tillering stage(TS)to the ripening stage(RS)for the CK,with F_(ac) values increased from 17%-20% to 46%-55%.With RP,the F_(ac) values were enhanced by 10%-20%,and it significantly increased the copy numbers of the mcrA gene at the four rice stages(TS,booting stage(BS),grain-filling stage(GS),and RS).Furthermore,the effect of the RP on the abundance of the mcrA gene was highly concurrent with the effect on the F_(ac) values.At the TS,the Fox values at the soil-water interface were around 50%-75% for the CK,being 15%-20% lower than those of the RP in the rhizosphere.It increased to 65%-100% at the GS,but was reduced by 20%-30% after the RP.These differences might be because the copy numbers of the pmoA gene were significantly raised at the TS while lowered at the GS by the RP.This was further demonstrated by the strong correlations between the effect of the RP on the abundance of the pmoA gene and the effect on the Fox values.These findings suggest that RP markedly impacts on the abundances of the mcrA and pmoA genes,affecting the pathway of CH4_(4) production and the fraction of CH4_(4) oxidization,respectively.
基金Project Supported by The National Natural Science Foundation of China(81300302)
文摘Yin-yang theory and Wuxing theory are the core parts of Traditional Chinese Medicine(TCM). Most of researches on Wuxing theory are based on the paradigm of TCM or Traditional Chinese Culture. It is an evitable challenge to interpret Wuxing theory in the term of biomolecular, biochemistry, stem cell and so on. The oxidation of glucose is the important pathway in cell and there are five basic factors which will be responsible for the undergoing of this reaction. The relationships among these factors are similar to Wuxing theory just like inter-promotion and inter-restraint. So, this understanding on Wuxing theory maybe take some advancement for the modernization of TCM.
文摘The effects of Pd loading, cerium content, the special surface area of the support and calcination temperature on the catalytic properties of Pd-loaded zirconia-ceria mixed oxide were studied.The results show that loading Pd and increasing cerium content in the mixed oxides can enhance the catalytic activity.There is a little effect of calcination temperature on catalytic activities, implying that these catalysts are effective with good thermal stability.
文摘The oxidization resistance of the Ni76Cr19A1Ti alloy was studied by a static oxidization experiment at 600-800℃. The results show that the oxidation behavior of the alloy can be explained by a kinetic equation: (△m/S)2 = Kpt + C, where Kp is a kinetic constant of the nickel-base alloy. The higher the experimental temperature, the higher the value of Kp. It is discovered that the microstructure of the oxide scales is compact and the thickness of it is less than 10 μm The oxidization of the alloy is in the first grade. It is also found that the oxide scales are mainly composed of Cr2O3 and TiO2. Chrome and titanium react more easily with oxygen at temperatures under the operating mode.
基金financially supported by the National Natural Science Foundation of China(32101452)the Research Foundation of Education Bureau of Hunan Province(22B0283)+2 种基金the Hunan Provincial Natural Science Foundation(2022JJ40865)the Talents Research Funding of Central South University of Forestry and Technology(2021YJ007)the Scientific Innovation Fund for Graduate of Central South University of Forestry and Technology(2024CX02005)。
文摘High-performance catalyst is significant for the sustainable hydrogen(H_(2))production by electrocatalytic water splitting.Optimizing porous structure and active groups of substrate can promote the interaction of substrate and active metal particles,enabling excellent catalytic properties and stability.Herein,the optimization strategy of delignification and 2,2,6,6-tetramethylpyperidine-1-oxyl(TEMPO)oxidization was developed to modify the porous structure and active groups of wood substrate,and Ru doped Co/CO_(2)P(Ru-Co/CO_(2)P)nanoparticles were encapsulated into the optimized wood carbon substrate(Ru-Co/CO_(2)P@TDCW)for the efficient pH-universal hydrogen evolution reaction(HER).The nanopore and carboxyl groups were produced by delignification and TEMPO oxidation,which accelerated the dispersion and deposition of Ru-Co/CO_(2)P nanoparticles.The RuCo alloy and RuCoP nanoparticles were produced with the doping of Ru,and more Ru-Co/CO_(2)P nanoparticles were anchored by the delignified and TEMPO oxidized wood carbon(TDCW).As anticipated,the Ru-Co/CO_(2)P@TDCW catalyst exhibited excellent pH-universal HER activity,and only 16.6,93,and 43 mV of overpotentials were required to deliver the current density of 50 mA cm^(-2)in alkaline,neutral,and acidic electrolytes,outperforming the noble Pt/C/TDCW catalyst significantly.In addition,Ru-Co/CO_(2)P@TDCW catalyst presented excellent stability for more than 600 h working at 100 mA cm^(-2)in alkaline solution(1.0 M KOH).Density function theory(DFT)results revealed that energy barriers for the dissociation of H_(2)O and the formation of H_(2)were decreased by the doping of Ru,and the conductivity and efficiency of electron migration were also enhanced.This work demonstrated a strategy to optimize the structure and properties of wood carbon substrate,providing a promising strategy to synthesize high-efficiency catalyst for H_(2)production.
文摘Ethylene glycol(EG)is a biomass derivative of polyethylene terephthalate(PET),and its electrocatalytic conversion into high-value chemicals has sparked widespread interest.This study reviews the most recent research development in electrocatalysis-based EG to glycolic acid(GA)conversion.Firstly,the strategies and research results of modulating the electronic structure of catalysts for efficient selective GA production from EG are reviewed.Second,by reviewing the data of in-situ Fourier transform infrared spectroscopy and in-situ electrochemically attenuated total reflection surface enhanced infrared absorption spectroscopy,the reaction pathway and catalytic mechanism of EG partial oxidation to GA were clarified.Finally,the design and regulation of catalysts for selective oxidation of EG by electrocatalysis in the future are prospected.
基金support from the National Natural Science Foundation of China (No. U1960202)the Opening Foundation from Shanghai Engineering Research Center of Hot Manufacturing, China (No. 18DZ2253400)。
文摘This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.
基金supported by the National Natural Science Foundation of China,Nos.82274313(to YD),82204746(to ML),82003982(to TL).
文摘It has been reported that the PI3K/AKT signaling pathway plays a key role in the pathogenesis of ischemic stroke.As a result,the development of drugs targeting the PI3K/AKT signaling pathway has attracted increasing attention from researchers.This article reviews the pathological mechanisms and advancements in research related to the signaling pathways in ischemic stroke,with a focus on the PI3K/AKT signaling pathway.The key findings include the following:(1)The complex pathological mechanisms of ischemic stroke can be categorized into five major types:excitatory amino acid toxicity,Ca^(2+)overload,inflammatory response,oxidative stress,and apoptosis.(2)The PI3K/AKT-mediated signaling pathway is closely associated with the occurrence and progression of ischemic stroke,which primarily involves the NF-κB,NRF2,BCL-2,mTOR,and endothelial NOS signaling pathways.(3)Natural products,including flavonoids,quinones,alkaloids,phenylpropanoids,phenols,terpenoids,and iridoids,show great potential as candidate substances for the development of innovative anti-stroke medications.(4)Recently,novel therapeutic techniques,such as electroacupuncture and mesenchymal stem cell therapy,have demonstrated the potential to improve stroke outcomes by activating the PI3K/AKT signaling pathway,providing new possibilities for the treatment and rehabilitation of patients with ischemic stroke.Future investigations should focus on the direct regulatory mechanisms of drugs targeting the PI3K/AKT signaling pathway and their clinical translation to develop innovative treatment strategies for ischemic stroke.