Silver-ceramics (Ag2MO2)(M=Co, Ni, or Cu) were prepared through thermal decompositionof coprecipitated oxalates. Pellets of these materials were annealed at 350℃ for different timeperiods up to 5 h. The effect of ann...Silver-ceramics (Ag2MO2)(M=Co, Ni, or Cu) were prepared through thermal decompositionof coprecipitated oxalates. Pellets of these materials were annealed at 350℃ for different timeperiods up to 5 h. The effect of annealing time on the transport properties was studied. IR andX-ray spectra were also studied.展开更多
Birefringent materials with large optical anisotropy,which can be used to modulate the polarization of light,play a key role in laser techniques and science.However,the exploration studies of new,superior birefringent...Birefringent materials with large optical anisotropy,which can be used to modulate the polarization of light,play a key role in laser techniques and science.However,the exploration studies of new,superior birefringent materials develop extremely slowly due to the lack of effective guidelines for rational design.Herein,three antimony(Ⅲ)fluoride oxalates,namely,Na_(2)Sb_(2)(C_(2)O_(4))F_(6),K_(2)Sb_(2)(C_(2)O_(4))F_(6),and Cs_(2)Sb_(2)-(C_(2)O_(4))_(2)F_(4)·H_(2)O,were successfully synthesized through a rational combination ofπ-conjugated C_(2)O_(4)^(2-)anions and Sb^(3+)cations with stereochemically active lone pairs.These oxalates feature unique quasi-one-dimensional chain structures that induce large optical anisotropy.Remarkably,Cs_(2)Sb_(2)(C_(2)O_(4))_(2)-F_(4)·H_(2)O exhibits the largest birefringence(0.325@546 nm)among all reported antimony(Ⅲ)-based oxysalts.Detailed structural analysis and theoretical calculations confirmed that the optical anisotropy of these oxalates could be tuned through the synergetic interactions of templated cations and anionic functional groups.This work may open the door to efficiently designing excellent birefringent materials and guide the further discovery of other novel structure-driven functional materials.展开更多
All-perovskite tandem solar cells(ATSCs) have the potential to surpass the Shockley-Queisser efficiency limit of conventional single-junction devices. However, the performance and stability of mixed tin–lead(Sn–Pb) ...All-perovskite tandem solar cells(ATSCs) have the potential to surpass the Shockley-Queisser efficiency limit of conventional single-junction devices. However, the performance and stability of mixed tin–lead(Sn–Pb) perovskite solar cells(PSCs), which are crucial components of ATSCs, are much lower than those of lead-based perovskites. The primary challenges include the high crystallization rate of perovskite materials and the susceptibility of Sn^(2+) oxidation, which leads to rough morphology and unfavorable p-type self-doping. To address these issues, we introduced ethylhydrazine oxalate(EDO) at the perovskite interface, which effectively inhibits the oxidation of Sn^(2+) and simultaneously enhances the crystallinity of the perovskite. Consequently, the EDO-modified mixed tin-lead PSCs reached a power conversion efficiency(PCE) of 21.96% with high reproducibility. We further achieved a 27.58% efficient ATSCs by using EDO as interfacial passivator in the Sn-Pb PSCs.展开更多
The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques inc...The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio.展开更多
Objective:Several therapeutic modalities for the prevention of calcium oxalate(CaOx)stones have been studied,but only a select few of these modalities have been incorporated into the American Urological Association gu...Objective:Several therapeutic modalities for the prevention of calcium oxalate(CaOx)stones have been studied,but only a select few of these modalities have been incorporated into the American Urological Association guidelines.Our study aimed to organize and interrogate existing research that may be promising for CaOx prevention.Methods:A literature search was conducted using MEDLINE and Embase from inception to November 16,2022.Our study population included adults with or without a history of CaOx kidney stones.Studies in which patients were treated with pharmacotherapies,herbal supplements,or uncategorized research chemicals that are not included in the current American Urological Association guidelines for preventing CaOx stones were included.Nonoriginal research was excluded.Results:Out of the 6155 identified articles,38 were included in the final analysis.The five distinct categories of interventions for stone prevention were“medications”,“herbal supplements”,“food and macronutrients”,“micronutrients”,and“enzymes and probiotics”.Modalities that were found to reduce known urinary risk factors were tolvaptan,cranberry juice,magnesium citrate,oxalate-degrading enzyme ALLN-177,and malic acid.Prophylaxis that reduced stone formation were sodium-glucose cotransporter-2 inhibitors,eicosapentaenoic acid,ethane-1-hydroxy-1,1-disphosphonate.Therapies that reduced urinary risk factors and stone formation were Phyllanthus niruri,rice bran,and magnesium hydroxide.Conclusion:Several of the identified therapies may provide prophylactic benefits for CaOx stone formation and may be useful for inclusion in guidelines for kidney stone prevention.展开更多
Molybdenum carbide has shown great potential in various hydrogenation reactions,and serves as a primary active species for synthesis of ethanol from dimethyl oxalate hydrogenation process which is a crucial step in th...Molybdenum carbide has shown great potential in various hydrogenation reactions,and serves as a primary active species for synthesis of ethanol from dimethyl oxalate hydrogenation process which is a crucial step in the efficient utilization of coal resources.In this study,a molybdenum carbide catalyst with a three-dimensional mesh-like hollow structure and lattice defects was carefully designed.The MoO_(3)precursor with abundant oxygen vacancies and defects was prepared by flame spray pyrolysis,and a structural modifier,Cu,was introduced by sputtering.The Cu deposited by sputtering affected the carburization and phase evolution processes.A three-dimensional mesh-like hollow structure composed of defective molybdenum carbide is formed,with theβ-Mo_(2)C exhibiting lattice distortions and defects.This defectiveβ-Mo_(2)C exhibits high reactivity,and facilitates the C=O hydrogenation process,showing a high reactivity of 83.1%yield in the hydrogenation of dimethyl oxalate.This work provides a new approach to the design and application of molybdenum carbide catalysts.展开更多
Oxalate content in spinach is a key trait of interest due to its relevance to human health.Understanding the genetic basis of it can facilitate the development of spinach varieties with reduced oxalate levels.In pursu...Oxalate content in spinach is a key trait of interest due to its relevance to human health.Understanding the genetic basis of it can facilitate the development of spinach varieties with reduced oxalate levels.In pursuit of understanding the genetic determinants,a diverse panel comprising 288 spinach accessions underwent thorough phenotyping of oxalate content and were subjected to whole-genome resequencing,resulting in a comprehensive dataset encompassing 14386 single-nucleotide polymorphisms(SNPs).Leveraging this dataset,we conducted a genome-wide association study(GWAS)to identify noteworthy SNPs associated with oxalate content.Furthermore,we employed genomic prediction(GP)via cross-prediction,utilizing five GP models,to assess genomic estimated breeding values(GEBVs)for oxalate content.The observed normal distribution and the wide range of oxalate content,exceeding 600.0 mg$100 g^(-1),underscore the complex and quantitative nature of this trait,likely influenced by multiple genes.Additionally,our analysis revealed distinct stratification,delineating the population into four discernible subpopulations.Furthermore,GWAS analysis employing five models in GAPIT 3 and TASSEL 5 unveiled nine significant SNPs(four SNPs on chromosome 1 and five on chromosome 5)associated with oxalate content.These loci exhibited associations with six candidate genes,which might have potential contribution to oxalate content regulation.Remarkably,our GP models exhibited notable predictive abilities,yielding average accuracies of up to 0.51 for GEBV estimation.The integration of GWAS and GP approaches offers a holistic comprehension of the genetic underpinnings of oxalate content in spinach.These findings offered a promising avenue for the development of spinach cultivars and hybrids optimized for oxalate levels,promoting consumer health.展开更多
In this paper,the research progress of Cu-based catalyst and the activity enhancement strategies in the hydrogenation of dimethyl oxalate(DMO)to ethylene glycol(EG)was reviewed.As a green and economical ethylene glyco...In this paper,the research progress of Cu-based catalyst and the activity enhancement strategies in the hydrogenation of dimethyl oxalate(DMO)to ethylene glycol(EG)was reviewed.As a green and economical ethylene glycol production path,the core of DMO hydrogenation of EG lies in the rational design and optimization of catalysts.This paper first introduces the background of the DMO hydrogenation system EG significance and the important effect of Cu-based catalyst in the reaction,particularly emphasizing the coordination with the Cu^(+)-Cu^(0) species catalytic effect.Then,many factors affecting the activity of Cu-based catalysts were analyzed in detail,including the equilibrium effect between Cu^(0) and Cu+species,the surface dispersion of Cu species,the interaction between metal and support,and the morphology effect of the catalyst.Regarding strategies for improving catalyst performance,this paper summarized effective measures such as optimizing support structure,adding promoters and optimizing preparation methods,and demonstrated the practical application effects of these strategies through representative catalyst examples.In addition,this paper also discusses the complex relationship between the influencing factors and catalyst performance.It points out the key directions for future research,with in-depth exploration of the correlation between catalyst structure and performance,the development of new catalysts,and the application of machine learning and big data technology in the catalyst research and development.In summary,this paper provides comprehensive theoretical guidance and practical reference for the performance optimization of Cu-based catalysts for DMO hydrogenation to EG.展开更多
Abstract:In today’s economy,determining accessible and affordable techniques to remove Heavy Metals(HMs)from wastewater is crucial.Activated carbon is highly effective in adsorbing HMs due to its large surface area a...Abstract:In today’s economy,determining accessible and affordable techniques to remove Heavy Metals(HMs)from wastewater is crucial.Activated carbon is highly effective in adsorbing HMs due to its large surface area and porous structure.It works by attracting and binding HM ions to its surface.Okoubaka is known for its medicinal properties and some studies suggest it has detoxifying effects.However,its specific role in HM removal would likely involve binding mechanisms like other plant-based materials.This study examines the efficiency of activated charcoal,charred versus uncharred Okoubaka plant materials,eggshells and oxalic acid to remove HMs like copper,lead,and zinc from contaminated water.展开更多
Herein,we present the electrocatalytic four-electron hydrogenation of oxalic acid into glycolic acid using black TiO_(2)as an electrocatalyst.Oxalic acid is an abundant compound found in several sources of organic was...Herein,we present the electrocatalytic four-electron hydrogenation of oxalic acid into glycolic acid using black TiO_(2)as an electrocatalyst.Oxalic acid is an abundant compound found in several sources of organic waste.The results showed a high selectivity of black TiO_(2)toward glycolic acid,with the formation of glyoxylic acid being the rate-limiting step (glyoxylic acid is the two-electron intermediate).The highest Faradaic efficiency (FE) of 69.6%±8.3% was achieved at 10.2 mA cm^(-2)in 4 h of electrolysis using an H-type cell operated at room temperature,with 50.2%±3.8% of oxalic acid conversion (degradation kinetic constant k=0.0042±0.0001 min-1),58.8%±7.0%of reaction yield and 1.2±0.18 g L-1of glycolic acid production.A theoretical model of black TiO_(2)coming from anatase TiO_(2)was implemented by introducing Ti3+defects,which gave black TiO_(2)the theoretical capability to easily transform oxalic acid into glycolic acid as experimentally observed.The reaction mechanism was supported and described in detail by density functional theory calculations,which revealed that surface Ti^(3+)states were the main catalytic sites.This is the first time that a detailed step-by-step mechanism at the atomic level has been proposed for this electrocatalytic reaction,which represents a valuable contribution to the understanding of this process of high energy/environmental interest.This is also the first time that black TiO_(2)has been used as an electrocatalyst for this sustainable process.展开更多
Ethanol synthesis via dimethyl oxalate hydrogenation has garnered increasing attention in the fields of syngas utilization.Althoughε-Fe_(2)C has been identified as a promising active species for DMO hydrogenation to ...Ethanol synthesis via dimethyl oxalate hydrogenation has garnered increasing attention in the fields of syngas utilization.Althoughε-Fe_(2)C has been identified as a promising active species for DMO hydrogenation to ethanol,its formation is kinetically challenging during carbonization.In this work,a Fe_(4)N phase was first synthesized by pretreating a 30Fe/SiO_(2)catalyst in an ammonia environment,followed by carbonization in a methanol-H_(2) flow to obtain ε-Fe_(2)C as the active phase.Fe_(4)N,rather than Fe-O-Si,facilitates the transformation into iron carbide during the carbonization process.The transformation pathway of iron nitride(Fe_(x)N)is mediated by intermediate iron carbonyl species(Fe-CO),ultimately leading to the formation of iron carbide as the active phase.The resulting catalyst exhibited 40 times higher catalytic activity than the untreated catalyst in DMO hydrogenation.Combined structure properties and DFT calculation revealed that the lower energy barrier ofε-Fe_(2)C for ester hydrogenation underpins/strengthens its superior performance,while the STY of ε-Fe_(2)C is 2.8 times that ofε'-Fe_(2.2)C and 58 times that ofχ-Fe_(5)C_(2).This study provides a novel strategy for designing highly efficient iron carbide catalysts for the esters hydrogenation system.展开更多
Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal perform...Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance,accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate.In this study,we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites.As expected,the stronger antipassivation ability of oxalate modified nZVI(OX-nZVI)strongly favored its phosphate adsorption.Interestingly,the oxalate modification endowed the surface Fe(III)sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites,by in situ forming a Fe(III)-phosphate-oxalate ternary complex,therefore enabling an advanced phosphate removal process.At an initial phosphate concentration of 1.00 mg P/L,pH of 6.0 and a dosage of 0.3 g/L of adsorbents,OX-nZVI exhibited faster phosphate removal rate(0.11 g/mg/min)and lower residual phosphate level(0.02 mg P/L)than nZVI(0.055 g/mg/min and 0.19 mg P/L).This study sheds light on the importance of site manipulation in the development of high-performance adsorbents,and offers a facile surface modification strategy to prepare superior iron-basedmaterials for advanced phosphate removal.展开更多
Pathological mineralizations in breast lesions are closely associated with disease progression and serves as a critical diagnostic indicator.However,systematic understanding remains lacking regarding the phase categor...Pathological mineralizations in breast lesions are closely associated with disease progression and serves as a critical diagnostic indicator.However,systematic understanding remains lacking regarding the phase categories,distribution patterns,and proportional occurrences of mineral phases across different breast lesion types.The diagnostic implications of specific phases,such as calcium oxalate,for distinguishing benign and malignant lesions remain controversial.This study employed polarizing microscopy,environmental scanning electron microscopy(SEM)with energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FTIR),and Raman spectroscopy to analyze the phase composition of 61 mineralized samples from three lesion types:Invasive carcinoma,carcinoma in situ and benign lesions.Results demonstrate that breast lesion mineralizations predominantly comprise calcium phosphates,including hydroxyapatite(HA),amorphous calcium phosphate(ACP),and whitlockite,occasionally accompanied by calcium oxalate(monohydrate or dihydrate).Distinct distribution patterns and proportional occurrences of minerals were observed among the three types of lesion mineralizations.HA,as the predominant phase,was ubiquitously present across all three lesion categories.ACP,a mineralization precursor phase,emerged during early mineralization stages across all lesion types.Notably,whitlockite exclusively occurred in benign lesions and carcinoma in situ,with higher prevalence in benign cases,suggesting a progressive decline in Mg^(2+)concentration within the lesion microenvironment as malignancy advances.Calcium oxalate coexisted with HA in mineralized regions across all lesion types,and its presence in invasive carcinoma specimens warrants heightened clinical attention.展开更多
The hydrogenation of dimethyl oxalate(DMO)to ethanol(Et OH)represents a promising avenue for syngas conversion and plays a pivotal role in advancing sustainable energy economies.Nevertheless,designing catalysts with h...The hydrogenation of dimethyl oxalate(DMO)to ethanol(Et OH)represents a promising avenue for syngas conversion and plays a pivotal role in advancing sustainable energy economies.Nevertheless,designing catalysts with high Et OH yields at low temperatures remains a significant challenge.This study introduces an efficient catalyst featuring a rich SiO_(2)-Ni_(3)Mo_(3)N interface,which achieved a remarkable 97.5%Et OH yield at 210°C and 2 MPa.Impressively,an Et OH yield of 95%was also obtained at 210°C and 1.5 MPa.The research demonstrates that the addition of SiO_(2)fosters the development of a rich SiO_(2)-Ni_(3)Mo_(3)N interface,which enhances the concentration of Lewis acid sites(L-acid)and Brønsted acids sites(B-acid)within the catalyst.This enhancement promotes the adsorption of raw material and intermediate products while increasing H_(2)adsorption,thereby boosting the catalyst's deep hydrogenation capacity.Density functional theory(DFT)simulations indicate that SiO2incorporation modifies the catalyst's metal d-band center through electron transfer,increasing its adsorption capability for raw materials and intermediates and facilitating Et OH production.Consequently,this study achieves high Et OH yields at low temperatures,advances the industrialization process of syngas to Et OH conversion,and offers novel insights into constructing highly active catalytic interfaces for DMO hydrogenation.展开更多
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri...Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.展开更多
Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity.However,its inadequate catalytic activity results in difficulty in e...Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity.However,its inadequate catalytic activity results in difficulty in effectively degrading pollutants in the catalytic degradation system that it constitutes.Thus,we constructed a photochemical system composed of hematite with{001}facet of high activity facet and low-cost and non-toxic oxalic acid(OA)for the removal of various types of pollutants.The removal rate for the degradation of metronidazole,tetracycline hydrochloride,Rhodamine B,and hexavalent chromium by hematite nanoplate with the exposed{001}facet activating OA under visible light irradiation was 4.75,2.25,2.33,and 2.74 times than that by the exposed{110}facet,respectively.Density functional theory(DFT)calculation proved that the OA molecule was more easily adsorbed on the{001}facet of hematite than that on the{110}facet,which would favor the formation of the more Fe(Ⅲ)-OA complex and reactive species.In addition,the reactive site of metronidazole for the attraction of radicals was identified on the basis of the DFT calculation on the molecular occupied orbitals,and the possible degradation pathway for metronidazole included carbon chain fracture,hydroxyethyl-cleavage,denitrogenation,and hydroxylation.Thus,this finding may offer a valuable direction in designing an efficient iron-based catalyst based on facet engineering for the improved activity of Fenton-like systems such as OA activation.展开更多
Objective:This study aimed to analyze the correlation between urinary crystals and urinary calculi.Methods:Clinical data, including urinary crystal types, were collected from 237 patients with urinary calculi. The det...Objective:This study aimed to analyze the correlation between urinary crystals and urinary calculi.Methods:Clinical data, including urinary crystal types, were collected from 237 patients with urinary calculi. The detection rate of urine crystals and their correlation with stone composition were analyzed. The receiver operating characteristic curve analysis was used to determine the best cut-off value for predicting stone formation risk based on calcium oxalate crystals in urine.Results:Calcium oxalate was the most common component in 237 patients. Among them, 201 (84.81%) patients had stones containing calcium oxalate. In these patients, calcium oxalate crystals were detected in 45.77% (92/201) of cases. In different groups of calcium oxalate stones, calcium oxalate crystals accounted for more than 90% of the total number of crystals detected in each group. The detection rate of calcium oxalate crystals was higher in first-time stone formers than in recurrent patients. The receiver operating characteristic curve analysis suggested a cut-off value of 110 crystals/μL for predicting stone formation, validated with 65 patients and 100 normal people.Conclusion:Calcium oxalate crystals in urine can predict the composition of calcium oxalate stones and indicate a higher risk of stone formation when the number exceeds 110 crystals/μL. This non-invasive method may guide clinical treatment and prevention strategies.展开更多
An eddy deep leaching technology was developed in this paper to address the challenge of treating heavy metal contaminants in industrial mining areas.The desorption effect of As,Cd,Sb and Pb was investigated utilizing...An eddy deep leaching technology was developed in this paper to address the challenge of treating heavy metal contaminants in industrial mining areas.The desorption effect of As,Cd,Sb and Pb was investigated utilizing chemical leaching and physical eddy techniques.It was found that the heavy metals concentration increased with decreasing particle size.The highest proportion of Cd in the form distribution of soil was in the bound to iron and manganese oxides,while the maximum proportion of As,Sb and Pb were in the residual.The optimal solid-liquid ratio of the hydrocyclone was 1:20,and the corresponding separation efficiency and flow rate were 84.7%and 1.76 m^(3)/hr,respectively.The grade efficiency of soil particle separation increases with particle size and exceeds 99%for particles above 1,000μm.Leaching experiments have revealed that oxalic acid(OA)and a combination of oxalic acid and EDTA(OAPE)were more efficient than citric acid(CA)and a combination of citric acid and EDTA(CAPE)for the desorption of heavy metals,respectively.The comparison of OAPE and eddy leaching found that the latter improved the desorption efficiency by 9.4%,7.5%,7.2%and 7.8%for As,Cd,Sb and Pb compared to the former,respectively.The results demonstrated that the eddy leaching technique could further enhance the desorption efficiency of heavy metals.It is expected to provide technical support for soil remediation with reduced usage of leaching agents.展开更多
BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary art...BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary artery intervention[percuta-neous coronary intervention(PCI)]for coronary heart disease.Patients with mild-to-moderate depression of the liver-qi stagnation type after PCI for coronary heart disease at the 305th Hospital of the People’s Liberation Army were enrolled from June 2022 to November 2023 and randomly assigned to two groups:Experimental(treated with Shugan Jieyu capsules)and control(tr-eated with escitalopram oxalate tablets).This study compared the antidepressant effects of these treatments using 17-item Hamilton Rating Scale for Depression(HAMD-17)scores,metabolic equivalents,low-density lipoprotein cholesterol,BDNF,high-sensitivity C-reactive protein levels,miR-124 and miR-132 levels,distribution of immune-related lymphocyte subsets,and traditional Chinese me-dicine syndrome scores before and after 6 weeks of treatment.RESULTS No significant difference was observed in any index between the two groups before treatment(P>0.05).After treatment,the total efficacy rates were 93.33%and 90.00%in the experimental and control groups,respectively.Experimental group had significantly lower scores for the main and secondary syndromes compared to the control group(P<0.05).No significant difference was observed in the metabolic equivalents between the two groups be-fore and after treatment(P>0.05).The levels of low-density lipoprotein cholesterol,high-sensitivity C-reactive pro-tein,and miR-132 were significantly lower,whereas those of miR-124,BDNF,CD3+T lymphocytes,CD3+CD4+T helper lymphocytes,and CD3+CD4+/CD3+CD8+cells were significantly higher in the experimental group com-pared to the control group(P<0.05).The incidence of adverse reactions during experimental group was signi-ficantly lower than that in control group(P<0.05).CONCLUSION Shugan Jieyu capsules have good efficacy in patients with mild-to-moderate depression after PCI,and its me-chanism may contribute to the regulation of miR-124,miR-132,BDNF levels,and lymphoid immune cells.展开更多
The development of high-energy-density Li-ion batteries is hindered by the irreversible capacity loss during the initial charge-discharge process.Therefore,pre-lithiation technology has emerged in the past few decades...The development of high-energy-density Li-ion batteries is hindered by the irreversible capacity loss during the initial charge-discharge process.Therefore,pre-lithiation technology has emerged in the past few decades as a powerful method to supplement the undesired lithium loss,thereby maximizing the energy utilization of LIBs and extending their cycle life.Lithium oxalate(Li_(2)C_(2)O_(4)),with a high lithium content and excellent air stability,has been considered one of the most promising materials for lithium compensation.However,the sluggish electrochemical decomposition kinetics of the material severely hinders its further commercial application.Here,we introduce a recrystallization strategy combined with atomic Ni catalysts to modulate the mass transport and decomposition reaction kinetics.The decomposition potential of Li_(2)C_(2)O_(4)is significantly decreased from~4.90V to~4.30V with a high compatibility with the current battery systems.In compared to the bare NCM//Li cell,the Ni/N-rGO and Li_(2)C_(2)O_(4)composite(Ni-LCO)modified cell releases an extra capacity of~11.7%.Moreover,this ratio can be magnified in the NCM//SiOx full cell,resulting in a 30.4%higher reversible capacity.Overall,this work brings the catalytic paradigm into the pre-lithiation technology,which opens another window for the development of high-energy-density battery systems.展开更多
文摘Silver-ceramics (Ag2MO2)(M=Co, Ni, or Cu) were prepared through thermal decompositionof coprecipitated oxalates. Pellets of these materials were annealed at 350℃ for different timeperiods up to 5 h. The effect of annealing time on the transport properties was studied. IR andX-ray spectra were also studied.
基金supported by the National Natural Science Foundation of China(22122106,22071158,21971171,and21875146)National Research Foundation of Korea(NRF)funded by the Ministry of Science and International Cooperation of Technology(2019R1A2C3005530)。
文摘Birefringent materials with large optical anisotropy,which can be used to modulate the polarization of light,play a key role in laser techniques and science.However,the exploration studies of new,superior birefringent materials develop extremely slowly due to the lack of effective guidelines for rational design.Herein,three antimony(Ⅲ)fluoride oxalates,namely,Na_(2)Sb_(2)(C_(2)O_(4))F_(6),K_(2)Sb_(2)(C_(2)O_(4))F_(6),and Cs_(2)Sb_(2)-(C_(2)O_(4))_(2)F_(4)·H_(2)O,were successfully synthesized through a rational combination ofπ-conjugated C_(2)O_(4)^(2-)anions and Sb^(3+)cations with stereochemically active lone pairs.These oxalates feature unique quasi-one-dimensional chain structures that induce large optical anisotropy.Remarkably,Cs_(2)Sb_(2)(C_(2)O_(4))_(2)-F_(4)·H_(2)O exhibits the largest birefringence(0.325@546 nm)among all reported antimony(Ⅲ)-based oxysalts.Detailed structural analysis and theoretical calculations confirmed that the optical anisotropy of these oxalates could be tuned through the synergetic interactions of templated cations and anionic functional groups.This work may open the door to efficiently designing excellent birefringent materials and guide the further discovery of other novel structure-driven functional materials.
基金financially supported by National Key R&D Program of China (2025YFE0100300)the National Natural Science Foundation of China (52202293 and 52330004)the Fundamental Research Funds for the Central Universities (WUT: 2023IVA075 and 2023IVB009)。
文摘All-perovskite tandem solar cells(ATSCs) have the potential to surpass the Shockley-Queisser efficiency limit of conventional single-junction devices. However, the performance and stability of mixed tin–lead(Sn–Pb) perovskite solar cells(PSCs), which are crucial components of ATSCs, are much lower than those of lead-based perovskites. The primary challenges include the high crystallization rate of perovskite materials and the susceptibility of Sn^(2+) oxidation, which leads to rough morphology and unfavorable p-type self-doping. To address these issues, we introduced ethylhydrazine oxalate(EDO) at the perovskite interface, which effectively inhibits the oxidation of Sn^(2+) and simultaneously enhances the crystallinity of the perovskite. Consequently, the EDO-modified mixed tin-lead PSCs reached a power conversion efficiency(PCE) of 21.96% with high reproducibility. We further achieved a 27.58% efficient ATSCs by using EDO as interfacial passivator in the Sn-Pb PSCs.
文摘The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio.
文摘Objective:Several therapeutic modalities for the prevention of calcium oxalate(CaOx)stones have been studied,but only a select few of these modalities have been incorporated into the American Urological Association guidelines.Our study aimed to organize and interrogate existing research that may be promising for CaOx prevention.Methods:A literature search was conducted using MEDLINE and Embase from inception to November 16,2022.Our study population included adults with or without a history of CaOx kidney stones.Studies in which patients were treated with pharmacotherapies,herbal supplements,or uncategorized research chemicals that are not included in the current American Urological Association guidelines for preventing CaOx stones were included.Nonoriginal research was excluded.Results:Out of the 6155 identified articles,38 were included in the final analysis.The five distinct categories of interventions for stone prevention were“medications”,“herbal supplements”,“food and macronutrients”,“micronutrients”,and“enzymes and probiotics”.Modalities that were found to reduce known urinary risk factors were tolvaptan,cranberry juice,magnesium citrate,oxalate-degrading enzyme ALLN-177,and malic acid.Prophylaxis that reduced stone formation were sodium-glucose cotransporter-2 inhibitors,eicosapentaenoic acid,ethane-1-hydroxy-1,1-disphosphonate.Therapies that reduced urinary risk factors and stone formation were Phyllanthus niruri,rice bran,and magnesium hydroxide.Conclusion:Several of the identified therapies may provide prophylactic benefits for CaOx stone formation and may be useful for inclusion in guidelines for kidney stone prevention.
文摘Molybdenum carbide has shown great potential in various hydrogenation reactions,and serves as a primary active species for synthesis of ethanol from dimethyl oxalate hydrogenation process which is a crucial step in the efficient utilization of coal resources.In this study,a molybdenum carbide catalyst with a three-dimensional mesh-like hollow structure and lattice defects was carefully designed.The MoO_(3)precursor with abundant oxygen vacancies and defects was prepared by flame spray pyrolysis,and a structural modifier,Cu,was introduced by sputtering.The Cu deposited by sputtering affected the carburization and phase evolution processes.A three-dimensional mesh-like hollow structure composed of defective molybdenum carbide is formed,with theβ-Mo_(2)C exhibiting lattice distortions and defects.This defectiveβ-Mo_(2)C exhibits high reactivity,and facilitates the C=O hydrogenation process,showing a high reactivity of 83.1%yield in the hydrogenation of dimethyl oxalate.This work provides a new approach to the design and application of molybdenum carbide catalysts.
基金supported by USDA-SCRI(Grant Nos.2017-51181-26830 and 2023-51181-41321)USDA-AMS SCMP(Grant No.16SCCMAR0001)+1 种基金Arkansas Department of Agriculture SCBGP(Grant No.AM22SCBGPAR1130-00)USDA NIFA Hatch project(Grant Nos.ARK0VG2018 and ARK02440).
文摘Oxalate content in spinach is a key trait of interest due to its relevance to human health.Understanding the genetic basis of it can facilitate the development of spinach varieties with reduced oxalate levels.In pursuit of understanding the genetic determinants,a diverse panel comprising 288 spinach accessions underwent thorough phenotyping of oxalate content and were subjected to whole-genome resequencing,resulting in a comprehensive dataset encompassing 14386 single-nucleotide polymorphisms(SNPs).Leveraging this dataset,we conducted a genome-wide association study(GWAS)to identify noteworthy SNPs associated with oxalate content.Furthermore,we employed genomic prediction(GP)via cross-prediction,utilizing five GP models,to assess genomic estimated breeding values(GEBVs)for oxalate content.The observed normal distribution and the wide range of oxalate content,exceeding 600.0 mg$100 g^(-1),underscore the complex and quantitative nature of this trait,likely influenced by multiple genes.Additionally,our analysis revealed distinct stratification,delineating the population into four discernible subpopulations.Furthermore,GWAS analysis employing five models in GAPIT 3 and TASSEL 5 unveiled nine significant SNPs(four SNPs on chromosome 1 and five on chromosome 5)associated with oxalate content.These loci exhibited associations with six candidate genes,which might have potential contribution to oxalate content regulation.Remarkably,our GP models exhibited notable predictive abilities,yielding average accuracies of up to 0.51 for GEBV estimation.The integration of GWAS and GP approaches offers a holistic comprehension of the genetic underpinnings of oxalate content in spinach.These findings offered a promising avenue for the development of spinach cultivars and hybrids optimized for oxalate levels,promoting consumer health.
基金supported by Guangxi Science and Technology Major Program(GuikeAA23062018)the Academic Newcomer Award Project of Guangxi University(2025GXUXSXR07)。
文摘In this paper,the research progress of Cu-based catalyst and the activity enhancement strategies in the hydrogenation of dimethyl oxalate(DMO)to ethylene glycol(EG)was reviewed.As a green and economical ethylene glycol production path,the core of DMO hydrogenation of EG lies in the rational design and optimization of catalysts.This paper first introduces the background of the DMO hydrogenation system EG significance and the important effect of Cu-based catalyst in the reaction,particularly emphasizing the coordination with the Cu^(+)-Cu^(0) species catalytic effect.Then,many factors affecting the activity of Cu-based catalysts were analyzed in detail,including the equilibrium effect between Cu^(0) and Cu+species,the surface dispersion of Cu species,the interaction between metal and support,and the morphology effect of the catalyst.Regarding strategies for improving catalyst performance,this paper summarized effective measures such as optimizing support structure,adding promoters and optimizing preparation methods,and demonstrated the practical application effects of these strategies through representative catalyst examples.In addition,this paper also discusses the complex relationship between the influencing factors and catalyst performance.It points out the key directions for future research,with in-depth exploration of the correlation between catalyst structure and performance,the development of new catalysts,and the application of machine learning and big data technology in the catalyst research and development.In summary,this paper provides comprehensive theoretical guidance and practical reference for the performance optimization of Cu-based catalysts for DMO hydrogenation to EG.
基金The Sherman Fairchild Foundation Undergraduate Research GrantThe National Science Foundation Award#1912400:HBCU-UP Implementation Project:Improving Minority Participation and Completion through STEM at Dillard University(IMPACTS@DU Ⅱ)Dillard University Endowed Professorship,funds。
文摘Abstract:In today’s economy,determining accessible and affordable techniques to remove Heavy Metals(HMs)from wastewater is crucial.Activated carbon is highly effective in adsorbing HMs due to its large surface area and porous structure.It works by attracting and binding HM ions to its surface.Okoubaka is known for its medicinal properties and some studies suggest it has detoxifying effects.However,its specific role in HM removal would likely involve binding mechanisms like other plant-based materials.This study examines the efficiency of activated charcoal,charred versus uncharred Okoubaka plant materials,eggshells and oxalic acid to remove HMs like copper,lead,and zinc from contaminated water.
基金DGAPA (Dirección General de Asuntos del Personal Acadé-mico) under Projects No. IA103521, IA209223 and IN111722Supercomputing Department of the Universidad Nacional Autónoma de México for the computing resources under Projects No. LANCAD-UNAM-DGTIC-427 and LANCAD-UNAM-DGTIC-370CONAHCYT-México for their postdoctoral fellowships。
文摘Herein,we present the electrocatalytic four-electron hydrogenation of oxalic acid into glycolic acid using black TiO_(2)as an electrocatalyst.Oxalic acid is an abundant compound found in several sources of organic waste.The results showed a high selectivity of black TiO_(2)toward glycolic acid,with the formation of glyoxylic acid being the rate-limiting step (glyoxylic acid is the two-electron intermediate).The highest Faradaic efficiency (FE) of 69.6%±8.3% was achieved at 10.2 mA cm^(-2)in 4 h of electrolysis using an H-type cell operated at room temperature,with 50.2%±3.8% of oxalic acid conversion (degradation kinetic constant k=0.0042±0.0001 min-1),58.8%±7.0%of reaction yield and 1.2±0.18 g L-1of glycolic acid production.A theoretical model of black TiO_(2)coming from anatase TiO_(2)was implemented by introducing Ti3+defects,which gave black TiO_(2)the theoretical capability to easily transform oxalic acid into glycolic acid as experimentally observed.The reaction mechanism was supported and described in detail by density functional theory calculations,which revealed that surface Ti^(3+)states were the main catalytic sites.This is the first time that a detailed step-by-step mechanism at the atomic level has been proposed for this electrocatalytic reaction,which represents a valuable contribution to the understanding of this process of high energy/environmental interest.This is also the first time that black TiO_(2)has been used as an electrocatalyst for this sustainable process.
基金supported by the National Natural Science Foundation of China(21878227,22278309)。
文摘Ethanol synthesis via dimethyl oxalate hydrogenation has garnered increasing attention in the fields of syngas utilization.Althoughε-Fe_(2)C has been identified as a promising active species for DMO hydrogenation to ethanol,its formation is kinetically challenging during carbonization.In this work,a Fe_(4)N phase was first synthesized by pretreating a 30Fe/SiO_(2)catalyst in an ammonia environment,followed by carbonization in a methanol-H_(2) flow to obtain ε-Fe_(2)C as the active phase.Fe_(4)N,rather than Fe-O-Si,facilitates the transformation into iron carbide during the carbonization process.The transformation pathway of iron nitride(Fe_(x)N)is mediated by intermediate iron carbonyl species(Fe-CO),ultimately leading to the formation of iron carbide as the active phase.The resulting catalyst exhibited 40 times higher catalytic activity than the untreated catalyst in DMO hydrogenation.Combined structure properties and DFT calculation revealed that the lower energy barrier ofε-Fe_(2)C for ester hydrogenation underpins/strengthens its superior performance,while the STY of ε-Fe_(2)C is 2.8 times that ofε'-Fe_(2.2)C and 58 times that ofχ-Fe_(5)C_(2).This study provides a novel strategy for designing highly efficient iron carbide catalysts for the esters hydrogenation system.
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1205602,and 2023YFC3707801)the National Natural Science Foundation of China(Nos.U22A20402,22376073,21936003 and 22306119)China Postdoctoral Science Foundation(No.2023T160419).
文摘Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance,accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate.In this study,we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites.As expected,the stronger antipassivation ability of oxalate modified nZVI(OX-nZVI)strongly favored its phosphate adsorption.Interestingly,the oxalate modification endowed the surface Fe(III)sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites,by in situ forming a Fe(III)-phosphate-oxalate ternary complex,therefore enabling an advanced phosphate removal process.At an initial phosphate concentration of 1.00 mg P/L,pH of 6.0 and a dosage of 0.3 g/L of adsorbents,OX-nZVI exhibited faster phosphate removal rate(0.11 g/mg/min)and lower residual phosphate level(0.02 mg P/L)than nZVI(0.055 g/mg/min and 0.19 mg P/L).This study sheds light on the importance of site manipulation in the development of high-performance adsorbents,and offers a facile surface modification strategy to prepare superior iron-basedmaterials for advanced phosphate removal.
基金financially supported by the National Natural Science Foundation of China(41772033,41272048).
文摘Pathological mineralizations in breast lesions are closely associated with disease progression and serves as a critical diagnostic indicator.However,systematic understanding remains lacking regarding the phase categories,distribution patterns,and proportional occurrences of mineral phases across different breast lesion types.The diagnostic implications of specific phases,such as calcium oxalate,for distinguishing benign and malignant lesions remain controversial.This study employed polarizing microscopy,environmental scanning electron microscopy(SEM)with energy dispersive spectroscopy(EDS),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FTIR),and Raman spectroscopy to analyze the phase composition of 61 mineralized samples from three lesion types:Invasive carcinoma,carcinoma in situ and benign lesions.Results demonstrate that breast lesion mineralizations predominantly comprise calcium phosphates,including hydroxyapatite(HA),amorphous calcium phosphate(ACP),and whitlockite,occasionally accompanied by calcium oxalate(monohydrate or dihydrate).Distinct distribution patterns and proportional occurrences of minerals were observed among the three types of lesion mineralizations.HA,as the predominant phase,was ubiquitously present across all three lesion categories.ACP,a mineralization precursor phase,emerged during early mineralization stages across all lesion types.Notably,whitlockite exclusively occurred in benign lesions and carcinoma in situ,with higher prevalence in benign cases,suggesting a progressive decline in Mg^(2+)concentration within the lesion microenvironment as malignancy advances.Calcium oxalate coexisted with HA in mineralized regions across all lesion types,and its presence in invasive carcinoma specimens warrants heightened clinical attention.
基金the financial support from the National Natural Science Foundation of China(No.21962015)the Bingtuan Graduate Innovation Project 2024(No.BTYJXM-2024-K12)。
文摘The hydrogenation of dimethyl oxalate(DMO)to ethanol(Et OH)represents a promising avenue for syngas conversion and plays a pivotal role in advancing sustainable energy economies.Nevertheless,designing catalysts with high Et OH yields at low temperatures remains a significant challenge.This study introduces an efficient catalyst featuring a rich SiO_(2)-Ni_(3)Mo_(3)N interface,which achieved a remarkable 97.5%Et OH yield at 210°C and 2 MPa.Impressively,an Et OH yield of 95%was also obtained at 210°C and 1.5 MPa.The research demonstrates that the addition of SiO_(2)fosters the development of a rich SiO_(2)-Ni_(3)Mo_(3)N interface,which enhances the concentration of Lewis acid sites(L-acid)and Brønsted acids sites(B-acid)within the catalyst.This enhancement promotes the adsorption of raw material and intermediate products while increasing H_(2)adsorption,thereby boosting the catalyst's deep hydrogenation capacity.Density functional theory(DFT)simulations indicate that SiO2incorporation modifies the catalyst's metal d-band center through electron transfer,increasing its adsorption capability for raw materials and intermediates and facilitating Et OH production.Consequently,this study achieves high Et OH yields at low temperatures,advances the industrialization process of syngas to Et OH conversion,and offers novel insights into constructing highly active catalytic interfaces for DMO hydrogenation.
基金financially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Nos.52104395 and 52304365)the Science and Technology Planning Project of Guangzhou,China(Nos.202102021080 and 2024A04J10006)+1 种基金the National Key R&D Program of China(No.2021YFC2902605)the Natural Science Foundation of Guangdong Province,China(Nos.2023A1515030145 and 2023A1515011847)。
文摘Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.
基金supported by the National Natural Science Foundation of China(No.22176151)。
文摘Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity.However,its inadequate catalytic activity results in difficulty in effectively degrading pollutants in the catalytic degradation system that it constitutes.Thus,we constructed a photochemical system composed of hematite with{001}facet of high activity facet and low-cost and non-toxic oxalic acid(OA)for the removal of various types of pollutants.The removal rate for the degradation of metronidazole,tetracycline hydrochloride,Rhodamine B,and hexavalent chromium by hematite nanoplate with the exposed{001}facet activating OA under visible light irradiation was 4.75,2.25,2.33,and 2.74 times than that by the exposed{110}facet,respectively.Density functional theory(DFT)calculation proved that the OA molecule was more easily adsorbed on the{001}facet of hematite than that on the{110}facet,which would favor the formation of the more Fe(Ⅲ)-OA complex and reactive species.In addition,the reactive site of metronidazole for the attraction of radicals was identified on the basis of the DFT calculation on the molecular occupied orbitals,and the possible degradation pathway for metronidazole included carbon chain fracture,hydroxyethyl-cleavage,denitrogenation,and hydroxylation.Thus,this finding may offer a valuable direction in designing an efficient iron-based catalyst based on facet engineering for the improved activity of Fenton-like systems such as OA activation.
基金supported by the National Natural Science Foundation of China(No.82071638 to Song N).
文摘Objective:This study aimed to analyze the correlation between urinary crystals and urinary calculi.Methods:Clinical data, including urinary crystal types, were collected from 237 patients with urinary calculi. The detection rate of urine crystals and their correlation with stone composition were analyzed. The receiver operating characteristic curve analysis was used to determine the best cut-off value for predicting stone formation risk based on calcium oxalate crystals in urine.Results:Calcium oxalate was the most common component in 237 patients. Among them, 201 (84.81%) patients had stones containing calcium oxalate. In these patients, calcium oxalate crystals were detected in 45.77% (92/201) of cases. In different groups of calcium oxalate stones, calcium oxalate crystals accounted for more than 90% of the total number of crystals detected in each group. The detection rate of calcium oxalate crystals was higher in first-time stone formers than in recurrent patients. The receiver operating characteristic curve analysis suggested a cut-off value of 110 crystals/μL for predicting stone formation, validated with 65 patients and 100 normal people.Conclusion:Calcium oxalate crystals in urine can predict the composition of calcium oxalate stones and indicate a higher risk of stone formation when the number exceeds 110 crystals/μL. This non-invasive method may guide clinical treatment and prevention strategies.
基金financially supported by the National Natural Science Foundation of China (No.52025103)。
文摘An eddy deep leaching technology was developed in this paper to address the challenge of treating heavy metal contaminants in industrial mining areas.The desorption effect of As,Cd,Sb and Pb was investigated utilizing chemical leaching and physical eddy techniques.It was found that the heavy metals concentration increased with decreasing particle size.The highest proportion of Cd in the form distribution of soil was in the bound to iron and manganese oxides,while the maximum proportion of As,Sb and Pb were in the residual.The optimal solid-liquid ratio of the hydrocyclone was 1:20,and the corresponding separation efficiency and flow rate were 84.7%and 1.76 m^(3)/hr,respectively.The grade efficiency of soil particle separation increases with particle size and exceeds 99%for particles above 1,000μm.Leaching experiments have revealed that oxalic acid(OA)and a combination of oxalic acid and EDTA(OAPE)were more efficient than citric acid(CA)and a combination of citric acid and EDTA(CAPE)for the desorption of heavy metals,respectively.The comparison of OAPE and eddy leaching found that the latter improved the desorption efficiency by 9.4%,7.5%,7.2%and 7.8%for As,Cd,Sb and Pb compared to the former,respectively.The results demonstrated that the eddy leaching technique could further enhance the desorption efficiency of heavy metals.It is expected to provide technical support for soil remediation with reduced usage of leaching agents.
基金the 305 Hospital Independent Scientific Research Fund,2024,No.24ZZJJLW-022.
文摘BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary artery intervention[percuta-neous coronary intervention(PCI)]for coronary heart disease.Patients with mild-to-moderate depression of the liver-qi stagnation type after PCI for coronary heart disease at the 305th Hospital of the People’s Liberation Army were enrolled from June 2022 to November 2023 and randomly assigned to two groups:Experimental(treated with Shugan Jieyu capsules)and control(tr-eated with escitalopram oxalate tablets).This study compared the antidepressant effects of these treatments using 17-item Hamilton Rating Scale for Depression(HAMD-17)scores,metabolic equivalents,low-density lipoprotein cholesterol,BDNF,high-sensitivity C-reactive protein levels,miR-124 and miR-132 levels,distribution of immune-related lymphocyte subsets,and traditional Chinese me-dicine syndrome scores before and after 6 weeks of treatment.RESULTS No significant difference was observed in any index between the two groups before treatment(P>0.05).After treatment,the total efficacy rates were 93.33%and 90.00%in the experimental and control groups,respectively.Experimental group had significantly lower scores for the main and secondary syndromes compared to the control group(P<0.05).No significant difference was observed in the metabolic equivalents between the two groups be-fore and after treatment(P>0.05).The levels of low-density lipoprotein cholesterol,high-sensitivity C-reactive pro-tein,and miR-132 were significantly lower,whereas those of miR-124,BDNF,CD3+T lymphocytes,CD3+CD4+T helper lymphocytes,and CD3+CD4+/CD3+CD8+cells were significantly higher in the experimental group com-pared to the control group(P<0.05).The incidence of adverse reactions during experimental group was signi-ficantly lower than that in control group(P<0.05).CONCLUSION Shugan Jieyu capsules have good efficacy in patients with mild-to-moderate depression after PCI,and its me-chanism may contribute to the regulation of miR-124,miR-132,BDNF levels,and lymphoid immune cells.
基金supported by National Natural Science Foundation of China(Grant No.52002094)Guangdong Basic and Applied Basic Research Foundation(Grant No.2019A1515110756)+2 种基金Shenzhen Science and Technology Program(Grant No.JCYJ20210324121411031,JSGG202108021253804014,RCBS20210706092218040)the Shenzhen Steady Support Plan(GXWD20221030205923001,GXWD20201230155427003-20200824103000001)School Research Startup Expenses of Harbin Institute of Technology(Shenzhen)(Grant No.DD29100027,DD45001022).
文摘The development of high-energy-density Li-ion batteries is hindered by the irreversible capacity loss during the initial charge-discharge process.Therefore,pre-lithiation technology has emerged in the past few decades as a powerful method to supplement the undesired lithium loss,thereby maximizing the energy utilization of LIBs and extending their cycle life.Lithium oxalate(Li_(2)C_(2)O_(4)),with a high lithium content and excellent air stability,has been considered one of the most promising materials for lithium compensation.However,the sluggish electrochemical decomposition kinetics of the material severely hinders its further commercial application.Here,we introduce a recrystallization strategy combined with atomic Ni catalysts to modulate the mass transport and decomposition reaction kinetics.The decomposition potential of Li_(2)C_(2)O_(4)is significantly decreased from~4.90V to~4.30V with a high compatibility with the current battery systems.In compared to the bare NCM//Li cell,the Ni/N-rGO and Li_(2)C_(2)O_(4)composite(Ni-LCO)modified cell releases an extra capacity of~11.7%.Moreover,this ratio can be magnified in the NCM//SiOx full cell,resulting in a 30.4%higher reversible capacity.Overall,this work brings the catalytic paradigm into the pre-lithiation technology,which opens another window for the development of high-energy-density battery systems.