At present, more and more offshore wind farms have been built anti ntnnerous projects are on the drawing tables. Therefore, the study on the safety of collision between ships and offshore wind turbines (OWT) is of g...At present, more and more offshore wind farms have been built anti ntnnerous projects are on the drawing tables. Therefore, the study on the safety of collision between ships and offshore wind turbines (OWT) is of great practical signifieance. The present study takes the advantage of the famous LS-DYNA explicit code to simulate the dynamic proeess of the collision between a typical 3MW offshore wind turbine model with monopile fi)undation and a simplified 2000t-class ship model. In the simulation, the added mass effect of the ship, contact nonlinearity of collision, material nonlinearity of steel and aluminum foam and adaptive mesh tectmique for large structure deformation have been taken into considera- tion. Proposed is a crashworthy device for OWF of new conceptual steel sphere shell-cireular ring aluminum foam pad, and the good pe.rfurmanee of the device under the conditions of ship-OWT front impact and side impact has been verified from the views of theoretical analysis and numerical results. The new crashworthy device can effectively smooth the contact force and reduce the top structure dynamic response, using its own structure plastic deformation to absorb most of the ship collision enerty. As a result, the main structure of the OWF and the inside key electric control equipments can be saved by scarifying the structural plastic deformation of new sphere crashworthy device. What is more, the sphere configuratiun design of the crashworthy device can effectively guide the ship to run away from the main OWT structure and reduce the damage of the ship and OWT to some degree during side impact.展开更多
As offshore wind farms expand into deeper and farther ocean regions and the unit capacity of offshore wind turbines(OWTs)increases,there is a pressing need for a new foundation structure that can accommodate deep-sea ...As offshore wind farms expand into deeper and farther ocean regions and the unit capacity of offshore wind turbines(OWTs)increases,there is a pressing need for a new foundation structure that can accommodate deep-sea conditions and support large capacities while maintaining economical and safe.To meet this goal of integrated transportation and one-step installation,a novel five-bucket jacket foundation(FBJF),with its suction installation and leveling methods in sand,has been proposed,analyzed and experimentally studied.First,seepage failure experiments of the FBJF at various depths were conducted,and a formula for calculating the critical suction of seepage failure suitable for the FBJF in sand was chosen and recommended for use with a range of values for the permeability coefficient ratio.Second,through leveling experiments of the FBJF at different depths,the maximum adjustable leveling angle during the sinking process was defined using seepage failure and the adjustable leveling angle of the foundation as control criteria.Various leveling control strategies were proposed and verified.Finally,an automatic sinking and leveling control system for the FBJF was developed and experimentally verified for feasibility.展开更多
This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,...This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,blades,tower and other components(nacelle,hub,bedplate,etc.)has been explicitly established.The effects of pile−soil interaction,controller and operational conditions on the turbine dynamic responses are studied systematically in time domain and frequency domain.The results show that(1)a comprehensive drivetrain model has the capability to provide a more precise representation of the complex dynamic characteristics exhibited by drivetrain components,which can be used as the basis for further study on the dynamic characteristics of the drivetrain.(2)The pile−soil interaction can influence the wind turbine dynamic responses,particularly under the parked condition.(3)The effect of the pile−soil interaction on tower responses is more significant than that on blade responses.(4)The use of the controller can substantially affect the rotor characteristics,which in turn influences the turbine dynamic responses.(5)The tower and blade displacements under the operational condition are much larger than those under the parked condition.The model and methodology presented in this study demonstrate potential for examining complex dynamic behaviors of the monopile OWTs.To ensure accuracy and precision,it is imperative to construct a detailed model of the wind turbine system,while also taking into account simulation efficiency.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50538020)the National Science and Technology Planning(Grant No.2006BAJ03B00)
文摘At present, more and more offshore wind farms have been built anti ntnnerous projects are on the drawing tables. Therefore, the study on the safety of collision between ships and offshore wind turbines (OWT) is of great practical signifieance. The present study takes the advantage of the famous LS-DYNA explicit code to simulate the dynamic proeess of the collision between a typical 3MW offshore wind turbine model with monopile fi)undation and a simplified 2000t-class ship model. In the simulation, the added mass effect of the ship, contact nonlinearity of collision, material nonlinearity of steel and aluminum foam and adaptive mesh tectmique for large structure deformation have been taken into considera- tion. Proposed is a crashworthy device for OWF of new conceptual steel sphere shell-cireular ring aluminum foam pad, and the good pe.rfurmanee of the device under the conditions of ship-OWT front impact and side impact has been verified from the views of theoretical analysis and numerical results. The new crashworthy device can effectively smooth the contact force and reduce the top structure dynamic response, using its own structure plastic deformation to absorb most of the ship collision enerty. As a result, the main structure of the OWF and the inside key electric control equipments can be saved by scarifying the structural plastic deformation of new sphere crashworthy device. What is more, the sphere configuratiun design of the crashworthy device can effectively guide the ship to run away from the main OWT structure and reduce the damage of the ship and OWT to some degree during side impact.
基金financially supported by the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety of Tianjin University(Grant No.HESS-2002)。
文摘As offshore wind farms expand into deeper and farther ocean regions and the unit capacity of offshore wind turbines(OWTs)increases,there is a pressing need for a new foundation structure that can accommodate deep-sea conditions and support large capacities while maintaining economical and safe.To meet this goal of integrated transportation and one-step installation,a novel five-bucket jacket foundation(FBJF),with its suction installation and leveling methods in sand,has been proposed,analyzed and experimentally studied.First,seepage failure experiments of the FBJF at various depths were conducted,and a formula for calculating the critical suction of seepage failure suitable for the FBJF in sand was chosen and recommended for use with a range of values for the permeability coefficient ratio.Second,through leveling experiments of the FBJF at different depths,the maximum adjustable leveling angle during the sinking process was defined using seepage failure and the adjustable leveling angle of the foundation as control criteria.Various leveling control strategies were proposed and verified.Finally,an automatic sinking and leveling control system for the FBJF was developed and experimentally verified for feasibility.
基金supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant Nos.KJQN202101133 and KJQN202301105)Scientific Research Foundation of Chongqing University of Technology(Grant No.2020ZDZ023).
文摘This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,blades,tower and other components(nacelle,hub,bedplate,etc.)has been explicitly established.The effects of pile−soil interaction,controller and operational conditions on the turbine dynamic responses are studied systematically in time domain and frequency domain.The results show that(1)a comprehensive drivetrain model has the capability to provide a more precise representation of the complex dynamic characteristics exhibited by drivetrain components,which can be used as the basis for further study on the dynamic characteristics of the drivetrain.(2)The pile−soil interaction can influence the wind turbine dynamic responses,particularly under the parked condition.(3)The effect of the pile−soil interaction on tower responses is more significant than that on blade responses.(4)The use of the controller can substantially affect the rotor characteristics,which in turn influences the turbine dynamic responses.(5)The tower and blade displacements under the operational condition are much larger than those under the parked condition.The model and methodology presented in this study demonstrate potential for examining complex dynamic behaviors of the monopile OWTs.To ensure accuracy and precision,it is imperative to construct a detailed model of the wind turbine system,while also taking into account simulation efficiency.