In this work,BiOCl/OVs-BiPO_(4)heterojunction photocatalysts were successfully in-situ prepared by treating of BiPO_(4)with dilute hydrochloric acid(HCl)under hydrothermal condition.Systematically characterization res...In this work,BiOCl/OVs-BiPO_(4)heterojunction photocatalysts were successfully in-situ prepared by treating of BiPO_(4)with dilute hydrochloric acid(HCl)under hydrothermal condition.Systematically characterization results confirm that BiOCl/BiPO_(4)heterojunctions have been successfully in-situ constructed and oxygen vacancies(OVs)are significantly increased.The OVs on the surface of the BiOCl/OVS-BiPO_(4)heterojunctions photocatalyst and the interface electric field at the interface of the heterojunctions effectively accelerate the separation and migration of photogenerated carriers,and the surface OVs provide more sites for adsorption and reaction.Consequently,BiOCl/OVs-BiPO_(4)heterojunction photocatalysts have higher separation rate of photoexcited e-/h+pairs and exhibit ascendant photocatalytic degradation activity.Electron paramagnetic resonance(EPR)technology and free radical capture experiments give strong evidence that·O2-exists in the reaction system and is the leading species during the degradation process.The experimental results reveal that the degradation efficiency of rhodamine B(RhB)over BiPO_(4)treated with 3 ml of 0.1%dilute hydrochloric acid(3HCl-BPO)is 2.42 times of that over the reference BiPO_(4).After ultraviolet(UV)light illumination for 20 min,the destruction degree of RhB on the 3HCl-BPO sample reaches 99%.Moreover,the degradation rate of tetracycline(TC)is also obviously improved over 3HCl-BPO compared with that on the reference BiPO_(4)after 40 min exposure to ultraviolet light.The excellent stability of the sample was demonstrated by five cycles.A reasonable enhancement mechanism for BiOCl/OVs-BiPO_(4)heterojunctions was proposed to elucidate the boosted photocatalytic performance.This work offers a facile and reliable reference to design high performance BiPO_(4)-based photocatalysts for environment purification.展开更多
High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein...High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein,the porous perovskite-type RE(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3)(RE(=La,Sm,and Gd)is the abbreviation of rare earth)HEOs were successfully synthesized by a solution combustion synthesis(SCS)method.Owing to the synergistic effect of lattice distortion and oxygen vacancies(Ov),the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode exhibits superior high-rate lithium-ion storage performance and excellent cycling stability.A reversible capacity of 403 mAh·g^(-1) at a current rate of 0.2 A·g^(-1) after 500 cycles and a superior high-rate capacity of 394 mAh·g^(-1)even at 1.0 A·g^(-1)after 500 cycles are achieved.Meanwhile,the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode also exhibits a pronounced pseudo-capacitive behavior,contributing to an additional capacity.By adjusting and balancing the lattice distortion and oxygen vacancies of the electrode materials,the lithium-ion storage performance can be further regulated.展开更多
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi...Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.展开更多
Immune checkpoint inhibitor(ICI)has limited efficacy in the treatment of immune“cold”tumors.Due to insufficient T cell infiltration and heterogeneous programmed death ligand 1(PD-L1)expression,the ORR is only 5%–8%...Immune checkpoint inhibitor(ICI)has limited efficacy in the treatment of immune“cold”tumors.Due to insufficient T cell infiltration and heterogeneous programmed death ligand 1(PD-L1)expression,the ORR is only 5%–8%compared with 30%–40%of“hot”tumors.This article reviews the synergistic mechanism,clinical efficacy and optimization strategy of oncolytic virus(OVs)combined with ICIs in the treatment of refractory malignant tumors.Systematic analysis of mechanistic interactions across tumor types and clinical trial data demonstrates that OVs transform the immunosuppressive microenvironment by inducing immunogenic cell death and activating innate immunity.Concurrently,ICIs enhance adaptive immunity by reversing T-cell exhaustion and expanding T-cell diversity.Clinical trials in melanoma,head and neck cancer and breast cancer showed superior efficacy.The Objective Response Rate(ORR)of combination therapy was 39%–62%,while the ORR of ICI monotherapy was 18%.Treatment heterogeneity is mainly attributed to virus-related factors,including targeting specificity and replication efficiency,tumor characteristics,such as antigen presenting ability and mutation load,and host immune status,including preexisting antiviral antibodies and microbiome composition.This combined approach represents a paradigm shift in cancer immunotherapy,which effectively transforms immune“cold”tumors into“hot”tumors through the continuous activation of innate and adaptive immune responses.In the future,it is expected to improve the therapeutic effect of treatment-resistant malignant tumors through the integration of immune regulatory molecules,accurate biomarkers to guide the treatment scheme and triple combination strategy by a new generation of engineering viruses.展开更多
基金supported by Sichuan University of Science and Engineering(No.2021RC26)Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province(No.CSPC202105).
文摘In this work,BiOCl/OVs-BiPO_(4)heterojunction photocatalysts were successfully in-situ prepared by treating of BiPO_(4)with dilute hydrochloric acid(HCl)under hydrothermal condition.Systematically characterization results confirm that BiOCl/BiPO_(4)heterojunctions have been successfully in-situ constructed and oxygen vacancies(OVs)are significantly increased.The OVs on the surface of the BiOCl/OVS-BiPO_(4)heterojunctions photocatalyst and the interface electric field at the interface of the heterojunctions effectively accelerate the separation and migration of photogenerated carriers,and the surface OVs provide more sites for adsorption and reaction.Consequently,BiOCl/OVs-BiPO_(4)heterojunction photocatalysts have higher separation rate of photoexcited e-/h+pairs and exhibit ascendant photocatalytic degradation activity.Electron paramagnetic resonance(EPR)technology and free radical capture experiments give strong evidence that·O2-exists in the reaction system and is the leading species during the degradation process.The experimental results reveal that the degradation efficiency of rhodamine B(RhB)over BiPO_(4)treated with 3 ml of 0.1%dilute hydrochloric acid(3HCl-BPO)is 2.42 times of that over the reference BiPO_(4).After ultraviolet(UV)light illumination for 20 min,the destruction degree of RhB on the 3HCl-BPO sample reaches 99%.Moreover,the degradation rate of tetracycline(TC)is also obviously improved over 3HCl-BPO compared with that on the reference BiPO_(4)after 40 min exposure to ultraviolet light.The excellent stability of the sample was demonstrated by five cycles.A reasonable enhancement mechanism for BiOCl/OVs-BiPO_(4)heterojunctions was proposed to elucidate the boosted photocatalytic performance.This work offers a facile and reliable reference to design high performance BiPO_(4)-based photocatalysts for environment purification.
基金supported by the Natural Science Foundation of Anhui Province(Grant No.2008085ME125)University Natural Science Research Project of Anhui Province(Grant Nos.KJ2020A0268 and KJ2020A0270).
文摘High-entropy oxides(HEOs)have gained great attention as an emerging kind of highperformance anode materials for lithium-ion batteries(LIBs)due to the entropy stabilization and multi-principal synergistic effect.Herein,the porous perovskite-type RE(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3)(RE(=La,Sm,and Gd)is the abbreviation of rare earth)HEOs were successfully synthesized by a solution combustion synthesis(SCS)method.Owing to the synergistic effect of lattice distortion and oxygen vacancies(Ov),the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode exhibits superior high-rate lithium-ion storage performance and excellent cycling stability.A reversible capacity of 403 mAh·g^(-1) at a current rate of 0.2 A·g^(-1) after 500 cycles and a superior high-rate capacity of 394 mAh·g^(-1)even at 1.0 A·g^(-1)after 500 cycles are achieved.Meanwhile,the Gd(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))O_(3) electrode also exhibits a pronounced pseudo-capacitive behavior,contributing to an additional capacity.By adjusting and balancing the lattice distortion and oxygen vacancies of the electrode materials,the lithium-ion storage performance can be further regulated.
基金National Natural Science Foundation of China(71690233,71971213,71901214)。
文摘Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.
基金supported in part by grants from the National Natural Science Foundation ofChina(Nos.82260462,82460606,32360046)Yunnan Fundamental Research Kunming Medical University Joint Projects(Nos.202201AY0700001-144,202301AY070001-115)+2 种基金Yunnan Fundamental Research Projects(No.202201AT070269)Yunnan health training project of high level talents(Nos.D-2024007,H-2024023)Graduate Innovation Fund of Kunming Medical University(No.2025S100).
文摘Immune checkpoint inhibitor(ICI)has limited efficacy in the treatment of immune“cold”tumors.Due to insufficient T cell infiltration and heterogeneous programmed death ligand 1(PD-L1)expression,the ORR is only 5%–8%compared with 30%–40%of“hot”tumors.This article reviews the synergistic mechanism,clinical efficacy and optimization strategy of oncolytic virus(OVs)combined with ICIs in the treatment of refractory malignant tumors.Systematic analysis of mechanistic interactions across tumor types and clinical trial data demonstrates that OVs transform the immunosuppressive microenvironment by inducing immunogenic cell death and activating innate immunity.Concurrently,ICIs enhance adaptive immunity by reversing T-cell exhaustion and expanding T-cell diversity.Clinical trials in melanoma,head and neck cancer and breast cancer showed superior efficacy.The Objective Response Rate(ORR)of combination therapy was 39%–62%,while the ORR of ICI monotherapy was 18%.Treatment heterogeneity is mainly attributed to virus-related factors,including targeting specificity and replication efficiency,tumor characteristics,such as antigen presenting ability and mutation load,and host immune status,including preexisting antiviral antibodies and microbiome composition.This combined approach represents a paradigm shift in cancer immunotherapy,which effectively transforms immune“cold”tumors into“hot”tumors through the continuous activation of innate and adaptive immune responses.In the future,it is expected to improve the therapeutic effect of treatment-resistant malignant tumors through the integration of immune regulatory molecules,accurate biomarkers to guide the treatment scheme and triple combination strategy by a new generation of engineering viruses.