The utilization of unmanned aerial vehicle(UAV) relays in cooperative communication has gained considerable attention in recent years.However,the current research is mostly based on fixed base stations and users,lacki...The utilization of unmanned aerial vehicle(UAV) relays in cooperative communication has gained considerable attention in recent years.However,the current research is mostly based on fixed base stations and users,lacking sufficient exploration of scenarios where communication nodes are in motion.This paper presents a multi-destination vehicle communication system based on decode-and-forward(DF)UAV relays,where source and destination vehicles are moving and an internal eavesdropper intercepts messages from UAV.The closed-form expressions for system outage probability and secrecy outage probability are derived to analyze the reliability and security of the system.Furthermore,the impact of the UAV's position,signal transmission power,and system time allocation ratio on the system's performance are also analyzed.The numerical simulation results validate the accuracy of the derived formulas and confirm the correctness of the analysis.The appropriate time allocation ratio significantly enhances the security performance of system under various environmental conditions.展开更多
Extreme events such as tropical storm,tornado,hurricane cause significant disruptions to infrastructure systems including power,water,transportation,telecommunication services.Faster restoration from power outages is ...Extreme events such as tropical storm,tornado,hurricane cause significant disruptions to infrastructure systems including power,water,transportation,telecommunication services.Faster restoration from power outages is critical since power outages substantially impact various sectors including education,financial transactions,healthcare,and leisure.Thus,it is important to study outage restoration patterns.To develop data-driven models and test its performance on unseen hurricanes,high-resolution data from multiple hurricanes are required.However,such high-resolution power outage data from utility companies are proprietary and not easily acces-sible to all.Thus,the aim of this study is to demonstrate the use of macroscopic location data available from Facebook for analyzing power outage during hurricanes.First,it shows the association between population activity in Facebook and hurricane-induced power outage using the data for Hurricane Ida at a ZIP Code level.Second,it develops a data-driven model to predict power outage restoration pattern at a ZIP Code level utilizing Facebook data for Hurricanes Ida and Ian.We found that Facebook data can explain 59%of variance in by power outages at daily level and it can explain 65%of variance in restoration times from power outages at a ZIP code level.The data-driven model can reliably predict the restoration pattern from power outages(R^(2)=0.816).This study can aid researchers to choose alternative data for power outage analysis and help emergency managers and utility companies gain data-driven insights enhancing their decision-making for an impending hurricane.展开更多
A cooperative model of multiple primary and secondary users coexisting cognitive network is presented. In this model, the control center is aware of all the users' locations in order to allocate the nearest secondary...A cooperative model of multiple primary and secondary users coexisting cognitive network is presented. In this model, the control center is aware of all the users' locations in order to allocate the nearest secondary user to the primary user. The control center is aware of the information of the unused spectral resources in terms of the feedback of the sensing results from the secondary users. It allocates idle frequency bands among the secondary users. The primary user accesses the base station (BS) in orthogonal subchannels, and it cooperatively transmits packets with the secondary user and exploits the free band assigned by the control center to amplify-and-forward what it receives immediately. Under this scenario, the outage probability of the cooperative transmission pair of the primary and secondary transmitters is derived. The numerical simulation of the outage probabilities as a function of primary transmission probability ps, power allocation ratio ξ between the primary and secondary users, and the numbers of the primary and secondary users are given respectively. The results show that the optimal system performance is achieved under the conditions of ξ=0.5 and the numbers of the primary and the secondary users being equal.展开更多
Advanced Receiver Autonomous Integrity Monitoring(ARAIM) is a new technology that will provide worldwide coverage of vertical guidance in aviation navigation. The ARAIM performance and improvement under depleted const...Advanced Receiver Autonomous Integrity Monitoring(ARAIM) is a new technology that will provide worldwide coverage of vertical guidance in aviation navigation. The ARAIM performance and improvement under depleted constellations is a practical problem that needs to be faced and researched further. It is a shortcut that improves the availability in position domain whose key idea is to replace the conventional least squares process with a non-least-squares estimator to lower the integrity risk in exchange for a slight increase in nominal position error. The contributions given in this paper include two parts: First, the impacts of one satellite outage on different constellations are analyzed and compared. The conclusion is that GPS is more sensitive and vulnerable to one satellite outage. Second, a constellation weighted ARAIM(CW-ARAIM)position estimator is proposed. The position solution is replaced by a constellation weighted average solution to eliminate the constellation difference. The new solution will move close to the constellation solutions with respect to the accuracy requirement. The simulation results under baseline GPS and Galileo dual-constellation show that the one GPS satellite outage will knock the availability from 91% to only 50%. The performance remains stable with one Galileo satellite outage. With the assistance of the CW-ARAIM method, the availability can increase from 50% to more than80% under depleted GPS configurations. Even without any satellite outage, the proposed method can effectively improve the availability from 91.29% to 98.75%. The test results under optimistic constellations further verify that a balanced constellation is more important than more satellites on orbit and the superiority of CW-ARAIM method is still effective.展开更多
With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to inte...With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to integrate UAVs into the satellite network, where multiple satellites cooperatively serve the UAVs and mobile terminal using the Ku-band and above. Taking into account the rain fading and the fading correlation, the outage performance is first analytically obtained for fixed power allocation and then efficiently calculated by the proposed power allocation algorithm to guarantee the user fairness. Simulation results verify the outage performance analysis and show the performance improvement of the proposed power allocation scheme.展开更多
Cognitive radio allows Secondary Users (SUs) to dynamically use the spectrum resource licensed to Prirmry Users (PUs), and significantly improves the efficiency of spectrum utilization and is viewed as a promising...Cognitive radio allows Secondary Users (SUs) to dynamically use the spectrum resource licensed to Prirmry Users (PUs), and significantly improves the efficiency of spectrum utilization and is viewed as a promising technology. In cognitive radio networks, the problem of power control is an important issue. In this paper, we mainly focus on the problem of power control for fading channels in cognitive radio networks. The spectrum sharing underlay scenario is considered, where SUs are allowed to coexist with PUs on the condition that the outage probability of PUs is below the maximum outage probability threshold limitation due to the interference caused by SUs. Moreover, besides the outage probability threshold which is defined to protect the performance of PUs, we also consider the maximum transmit power constraints for each SU. With such a setup, we emphasize the problem of power control to minimize the outage probability of each SU in fading channels. Then, based on the statistical information of the fading channel, the closed expression for outage probability is given in fading channels. The Dual-Iteration Power Control (DIPC) algorithm is also proposed to minimize the outage probability based on Perron-Frobenius theory and gradient descent method under the constraint condition. Finally, simulation results are illustrated to demonstrate the performance of the proposed scheme.展开更多
This paper analyses of the outage probability and the achievable rate of massive multi-input-multi-output(MIMO) systems, in which the base station(BS) is equipped with digital-to-analog-converters(DACs) of mixed-level...This paper analyses of the outage probability and the achievable rate of massive multi-input-multi-output(MIMO) systems, in which the base station(BS) is equipped with digital-to-analog-converters(DACs) of mixed-level resolution. And the matched-filter(MF) precoding is used on the BS. Closedform expressions are derived by the distribution of user-interference power and other statistical properties in the signal-to-interference-plus-noise-ratio. Then, the combination of mixed-DACs resolution profile is chosen about outage probability and achievable rate with the BS energy consumption. And the resolution configurations between the outage probability and the achievable rate and the BS energy consumption are given. Meanwhile, Effects of related parameters and channel errors are analysed about outage probability and achievable rate. The numerical results show that the correctness of the formula derivations. As the number of users increases the system's achievable rate increases and the outage probability decreases. The selected resolution configuration system has better comprehensive performance.展开更多
In a cellular network it's very difficult to make spectrum resource more efficiently. Device-to-Device (D2D) technology enables new service opportunities, and provides high throughput and reliable communication whi...In a cellular network it's very difficult to make spectrum resource more efficiently. Device-to-Device (D2D) technology enables new service opportunities, and provides high throughput and reliable communication while reducing the base station load. For better total performance, short-range D2D links and cellular links share the same radio resource and the management of interference becomes a crucial task. Here we argue that single-hop D2D technology can be used to further improve cellular networks performance if the key D2D radio resource management algorithms are suitably extended to support multi-hop D2D communications. Aiming to establish a new paradigm for the analysis and design of multi-hop D2D communications, We propose a radio resource allocation for multi-hop D2D routes based on interference avoidance approach in LTE-A networks. On top of that, we investigate the outage probability of D2D communication. We first introduce a new definition of outage probability by considering the maximum distance to be allowable for single-hop transmission. Then we study and analyze the outage performance of a multi-hop D2D route. We derive the general dosed form expression of outage probability of the multi-hop D2D routes. The results demonstrate that the D2D radio, sharing the same resources as the cellular network, provide higher capacity compared to pure cellular communication where all the data is transmitted through the base station. They also demonstrate that the new method of calculation of D2D multi hop outage probability has better performance than classical method defined in the literature.展开更多
This paper describes the significant cost saving opportunities for consumers in developing countries by the use of computational intelligence and demand-side-management techniques to mitigate the massive use of diesel...This paper describes the significant cost saving opportunities for consumers in developing countries by the use of computational intelligence and demand-side-management techniques to mitigate the massive use of diesel back-up during grid outages. Application of load scheduling optimization is investigated during scheduled power outages, for residential consumer in India. The specific load shifting approaches explored include a day ahead predicted load schedule which is generated by performing a DSM referring to the forecasted day ahead outage. Whereas in reality the predicted may not match the actual outage, thus in these cases a fuzzy logic rule base is referred on real time basis to take corrective action & reach the best optimal load schedule possible to attain the lowest cost. The load types modeled include passive loads and schedulable, i.e. typically heavy loads. It is found that this multi-level DSM schemes show excellent benefits to the consumer. The maximum diesel savings for the consumer due to load shifting can be approximately ranging from 45% to as high as 75% for a flat-tariff grid. The study also showed that the actual savings potential depends on the timing of power outage, duration and the specific load characteristics.展开更多
In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a sma...In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions.展开更多
To solve the coverage and quality problems caused by cell outage in LTE networks, this paper proposes a distributed self-organizing networks management architecture and a distributed cell outage compensation managemen...To solve the coverage and quality problems caused by cell outage in LTE networks, this paper proposes a distributed self-organizing networks management architecture and a distributed cell outage compensation management mechanism. After detecting and analyzing the outage, a cell outage compensation algorithm based on reference signal power adjustment is proposed. The simulation results show that the proposed mechanism can mitigate the performance degradation significantly. Compared with other algorithms, the proposed scheme is more effective in compensating the coverage gap induced by cell outage展开更多
This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all tr...This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all transceivers are considered.After harvesting energy and decoding messages simultaneously via a power splitting scheme,the energy-limited relay node forwards the decoded information to both terminals.Each terminal combines the signals from the direct and relaying links via selection combining.We derive the system outage probability under independent but non-identically distributed Nakagami-m fading channels.It reveals an overall system ceiling(OSC)effect,i.e.,the system falls in outage if the target rate exceeds an OSC threshold that is determined by the levels of HIs.Furthermore,we derive the diversity gain of the considered network.The result reveals that when the transmission rate is below the OSC threshold,the achieved diversity gain equals the sum of the shape parameter of the direct link and the smaller shape parameter of the terminalto-relay links;otherwise,the diversity gain is zero.This is different from the amplify-and-forward(AF)strategy,under which the relaying links have no contribution to the diversity gain.Simulation results validate the analytical results and reveal that compared with the AF strategy,the SWIPT based two-way relaying links under the DF strategy are more robust to HIs and achieve a lower system outage probability.展开更多
A tightly coupled GPS ( global positioning system )/SINS ( strap down inertial navigation system) based on a GMDH ( group method of data handling) neural network was presented to solve the problem of degraded ac...A tightly coupled GPS ( global positioning system )/SINS ( strap down inertial navigation system) based on a GMDH ( group method of data handling) neural network was presented to solve the problem of degraded accuracy for less than four visible GPS satellites with poor signal quality. Positions and velocities of the satellites were predicted by a GMDH neural network, and the pseudo ranges and pseudo range rates received by the GPS receiver were simulated to ensure the regular op eration of the GPS/SINS Kalman filter during outages. In the mathematical simulation a tightly cou pled navigation system with a proposed approach has better navigation accuracy during GPS outages, and the anti jamming ability is strengthened for the tightly coupled navigation system.展开更多
In this paper,we consider a wireless ad hoc network consisting of multiple source nodes transmitting to their respective destinations,where an eavesdropper attempts to intercept their transmissions.We propose an optim...In this paper,we consider a wireless ad hoc network consisting of multiple source nodes transmitting to their respective destinations,where an eavesdropper attempts to intercept their transmissions.We propose an optimal transmission scheduling scheme to defend against the eavesdropper,where a source node having the highest secrecy rate is scheduled to access the wireless medium for transmitting to its destination in an opportunistic manner.To be specific,the secrecy rate between a pair of the source and destination in the presence of an eavesdropper varies temporally due to the wireless fading effect.The proposed optimal transmission scheduling scheme opportunistically selects a source node with the highest secrecy rate to transmit its data for the sake of maximizing the security of the ad hoc network against eavesdropping attacks.For comparison purposes,we also consider the conventional round-robin scheduling as a benchmark,where multiple source nodes take turns in accessing their shared wireless medium for transmitting to their respective destinations.We derive closed-form secrecy outage probability expressions of both the round-robin scheduling and the proposed optimal scheduling schemes over Rayleigh fading environments.Numerical results show that the proposed transmission scheduling scheme outperforms the conventional round-robin method in terms of its secrecy outage probability.Additionally,upon increasing the number of source-destination pairs,the secrecy outage probability of the round-robin scheme keeps unchanged,whereas the secrecy outage performance of the proposed transmission scheduling significantly improves,showing the security benefits of exploiting transmission scheduling for protecting wireless ad hoc networks against eavesdropping.展开更多
Heterogeneous networks(Het Nets)attracts a lot of attention due to its high capacity and large coverage for future communication networks.However,with the large-scale deployment of small cells,HetNets bears dramatical...Heterogeneous networks(Het Nets)attracts a lot of attention due to its high capacity and large coverage for future communication networks.However,with the large-scale deployment of small cells,HetNets bears dramatically increasing backhaul,which leads to a decrease of the outage performance.To improve the outage performance of Het Nets,we propose a wireless backhaul scheme for a two-layer HetNets,which automatically switches the three basic modes of orthogonal multiple access(OMA),nonorthogonal multiple access(NOMA)and cooperative non-orthogonal multiple access(CNOMA).First,we analyze the backhaul capacity and outage performance of these three basic modes.Then,we design the power allocation schemes based on minimizing outage probability for NOMA and CNOMA.Using the designed power allocation schemes,we propose a wireless backhaul scheme that switches the three modes according to the channel quality among different base stations(BSs).Moreover,the closed-form of the corresponding outage probability is derived.Compared with the three basic modes,the proposed wireless backhaul scheme can achieve the best outage performance and a higher backhaul capacity.Finally,all the analytical results are validated by simulations.展开更多
The outage probability of a composite microscopic and macroscopic diversity system is evaluated over correlated shadowed fading channels.The correlations on both a microlevel and macrolevel are taken into account for ...The outage probability of a composite microscopic and macroscopic diversity system is evaluated over correlated shadowed fading channels.The correlations on both a microlevel and macrolevel are taken into account for the evaluations.The expression of the desired outage probability is explicitly presented,and two evaluation approaches,i.e.a compact Gaussian-Hermite quadrature method and an effective iterative algorithm,are proposed.The accuracy and efficiency of the proposed approaches are analysed,and a guideline is provided for their application.By employing the proposed evaluation approaches,results and demonstrations are presented,which display the implied effects of the corresponding parameters on the system outage performance,and reveal the potential to facilitate the design and analysis of such composite diversity systems.展开更多
In the promising cooperative communication systems,network performance is mainly affected by interference instead of noise.In this paper,we consider the performance degraded by the Poisson filed interference in the du...In the promising cooperative communication systems,network performance is mainly affected by interference instead of noise.In this paper,we consider the performance degraded by the Poisson filed interference in the dual-hop relay channels.We focus on the discussions of error outage probability (EOP) performance with a selective-decode-and-forward (SDF),amplify-and-forward (AF),or fixed-decode-and-forward (DF) cooperation protocol.Finally,the simulation results present the performance with different cooperation protocols with interference in a Poisson field.展开更多
This paper proposes a modified decodeand-forward(DAF) protocol with a three-node model,which contains two users and one destination.Each user can be either the source or the relay in different frames.We analyze the fo...This paper proposes a modified decodeand-forward(DAF) protocol with a three-node model,which contains two users and one destination.Each user can be either the source or the relay in different frames.We analyze the four cooperative cases in the first frame and run simulations to obtain the optimal power allocation coefficients in the second frame.The closed-form expression of outage probability is derived over Nakagami-m fading channels.Furthermore,we show that the proposed model has better performance than the non-cooperation system and traditional DAF strategy based on the derived outage probability.展开更多
This paper presents an outage analysis of distributed antennas system(DAS) suffering from shadowed Nakagami-m fading environment where the desired signal also suffers from co-channel interference. The desired signal a...This paper presents an outage analysis of distributed antennas system(DAS) suffering from shadowed Nakagami-m fading environment where the desired signal also suffers from co-channel interference. The desired signal and interfering signal are subjected to path loss,multipath and shadowing fading. Based on Wilkinson's method,the signal to interference ratio(SIR) probability density function(PDF) of fixed DAS is obtained. Some numerical results of outage probability with different parameters are analyzed. The analysis results can provide sufficient precision for evaluating the outage performance of DAS.展开更多
In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection ...In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection algorithm is proposed.By the improved collaborative filtering prediction algorithm,the location correlation of users in the wireless network is considered.By incorporating the cooperative grey model prediction algorithm,the time correlation of users motion trajectory is also introduced.Data of users in a normal scenario is simulated and collected for model training and threshold calculating and the outage cell can be effectively detected using the proposed approach.The simulation results demonstrate that the proposed scheme has a higher detection rate for different extents of outage while ensuring the lower communication overhead and false alarm rate than traditional outage detection methods.The detection rate of the proposed approach outperforms the traditional method by around 14%,especially when there are sparse users in the network,and it is able to detect the outage cell with no active users with the help of neighbor cells.展开更多
基金supported by the National Natural Science Foundation of China under Grants 62001359 and 61901201by the Key Science and Technology Research Project of Henan Province under Grants 232102211059the Natural Science Basic Research Program of Shaanxi under Grants 2022JQ-658 and 2022JQ-621。
文摘The utilization of unmanned aerial vehicle(UAV) relays in cooperative communication has gained considerable attention in recent years.However,the current research is mostly based on fixed base stations and users,lacking sufficient exploration of scenarios where communication nodes are in motion.This paper presents a multi-destination vehicle communication system based on decode-and-forward(DF)UAV relays,where source and destination vehicles are moving and an internal eavesdropper intercepts messages from UAV.The closed-form expressions for system outage probability and secrecy outage probability are derived to analyze the reliability and security of the system.Furthermore,the impact of the UAV's position,signal transmission power,and system time allocation ratio on the system's performance are also analyzed.The numerical simulation results validate the accuracy of the derived formulas and confirm the correctness of the analysis.The appropriate time allocation ratio significantly enhances the security performance of system under various environmental conditions.
基金U.S.National Science Foundation for the grant CMMI-1832578 to support the research presented in this paper.
文摘Extreme events such as tropical storm,tornado,hurricane cause significant disruptions to infrastructure systems including power,water,transportation,telecommunication services.Faster restoration from power outages is critical since power outages substantially impact various sectors including education,financial transactions,healthcare,and leisure.Thus,it is important to study outage restoration patterns.To develop data-driven models and test its performance on unseen hurricanes,high-resolution data from multiple hurricanes are required.However,such high-resolution power outage data from utility companies are proprietary and not easily acces-sible to all.Thus,the aim of this study is to demonstrate the use of macroscopic location data available from Facebook for analyzing power outage during hurricanes.First,it shows the association between population activity in Facebook and hurricane-induced power outage using the data for Hurricane Ida at a ZIP Code level.Second,it develops a data-driven model to predict power outage restoration pattern at a ZIP Code level utilizing Facebook data for Hurricanes Ida and Ian.We found that Facebook data can explain 59%of variance in by power outages at daily level and it can explain 65%of variance in restoration times from power outages at a ZIP code level.The data-driven model can reliably predict the restoration pattern from power outages(R^(2)=0.816).This study can aid researchers to choose alternative data for power outage analysis and help emergency managers and utility companies gain data-driven insights enhancing their decision-making for an impending hurricane.
基金The National Natural Science Foundation of China (No.60972026)the Natural Science Foundation of Jiangsu Province (No.BK2008289)Specialized Research Fund for the Doctoral Program ofHigher Education (No.20090092110009)
文摘A cooperative model of multiple primary and secondary users coexisting cognitive network is presented. In this model, the control center is aware of all the users' locations in order to allocate the nearest secondary user to the primary user. The control center is aware of the information of the unused spectral resources in terms of the feedback of the sensing results from the secondary users. It allocates idle frequency bands among the secondary users. The primary user accesses the base station (BS) in orthogonal subchannels, and it cooperatively transmits packets with the secondary user and exploits the free band assigned by the control center to amplify-and-forward what it receives immediately. Under this scenario, the outage probability of the cooperative transmission pair of the primary and secondary transmitters is derived. The numerical simulation of the outage probabilities as a function of primary transmission probability ps, power allocation ratio ξ between the primary and secondary users, and the numbers of the primary and secondary users are given respectively. The results show that the optimal system performance is achieved under the conditions of ξ=0.5 and the numbers of the primary and the secondary users being equal.
基金funded by the National Natural Science Foundation of China (Nos. 61533008, 61374115, 61328301 and 61603181)the Funding of Jiangsu Innovation Program for Graduate Education of China (No. KYLX16_0379)the Open Fund of State Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University of China (No.17P02)
文摘Advanced Receiver Autonomous Integrity Monitoring(ARAIM) is a new technology that will provide worldwide coverage of vertical guidance in aviation navigation. The ARAIM performance and improvement under depleted constellations is a practical problem that needs to be faced and researched further. It is a shortcut that improves the availability in position domain whose key idea is to replace the conventional least squares process with a non-least-squares estimator to lower the integrity risk in exchange for a slight increase in nominal position error. The contributions given in this paper include two parts: First, the impacts of one satellite outage on different constellations are analyzed and compared. The conclusion is that GPS is more sensitive and vulnerable to one satellite outage. Second, a constellation weighted ARAIM(CW-ARAIM)position estimator is proposed. The position solution is replaced by a constellation weighted average solution to eliminate the constellation difference. The new solution will move close to the constellation solutions with respect to the accuracy requirement. The simulation results under baseline GPS and Galileo dual-constellation show that the one GPS satellite outage will knock the availability from 91% to only 50%. The performance remains stable with one Galileo satellite outage. With the assistance of the CW-ARAIM method, the availability can increase from 50% to more than80% under depleted GPS configurations. Even without any satellite outage, the proposed method can effectively improve the availability from 91.29% to 98.75%. The test results under optimistic constellations further verify that a balanced constellation is more important than more satellites on orbit and the superiority of CW-ARAIM method is still effective.
基金supported in part by the National Natural Science Foundation of China (No. 91638205, 91438206, 61771286, 61621091)
文摘With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to integrate UAVs into the satellite network, where multiple satellites cooperatively serve the UAVs and mobile terminal using the Ku-band and above. Taking into account the rain fading and the fading correlation, the outage performance is first analytically obtained for fixed power allocation and then efficiently calculated by the proposed power allocation algorithm to guarantee the user fairness. Simulation results verify the outage performance analysis and show the performance improvement of the proposed power allocation scheme.
文摘Cognitive radio allows Secondary Users (SUs) to dynamically use the spectrum resource licensed to Prirmry Users (PUs), and significantly improves the efficiency of spectrum utilization and is viewed as a promising technology. In cognitive radio networks, the problem of power control is an important issue. In this paper, we mainly focus on the problem of power control for fading channels in cognitive radio networks. The spectrum sharing underlay scenario is considered, where SUs are allowed to coexist with PUs on the condition that the outage probability of PUs is below the maximum outage probability threshold limitation due to the interference caused by SUs. Moreover, besides the outage probability threshold which is defined to protect the performance of PUs, we also consider the maximum transmit power constraints for each SU. With such a setup, we emphasize the problem of power control to minimize the outage probability of each SU in fading channels. Then, based on the statistical information of the fading channel, the closed expression for outage probability is given in fading channels. The Dual-Iteration Power Control (DIPC) algorithm is also proposed to minimize the outage probability based on Perron-Frobenius theory and gradient descent method under the constraint condition. Finally, simulation results are illustrated to demonstrate the performance of the proposed scheme.
基金supported by the National Natural Science Foundation of China(No.61961018)the Jiangxi Province Foundation for Distinguished Young Scholar(No.20192BCB23013)the Jiangxi Province Natural Science Foundation of China(20192ACB21003)。
文摘This paper analyses of the outage probability and the achievable rate of massive multi-input-multi-output(MIMO) systems, in which the base station(BS) is equipped with digital-to-analog-converters(DACs) of mixed-level resolution. And the matched-filter(MF) precoding is used on the BS. Closedform expressions are derived by the distribution of user-interference power and other statistical properties in the signal-to-interference-plus-noise-ratio. Then, the combination of mixed-DACs resolution profile is chosen about outage probability and achievable rate with the BS energy consumption. And the resolution configurations between the outage probability and the achievable rate and the BS energy consumption are given. Meanwhile, Effects of related parameters and channel errors are analysed about outage probability and achievable rate. The numerical results show that the correctness of the formula derivations. As the number of users increases the system's achievable rate increases and the outage probability decreases. The selected resolution configuration system has better comprehensive performance.
文摘In a cellular network it's very difficult to make spectrum resource more efficiently. Device-to-Device (D2D) technology enables new service opportunities, and provides high throughput and reliable communication while reducing the base station load. For better total performance, short-range D2D links and cellular links share the same radio resource and the management of interference becomes a crucial task. Here we argue that single-hop D2D technology can be used to further improve cellular networks performance if the key D2D radio resource management algorithms are suitably extended to support multi-hop D2D communications. Aiming to establish a new paradigm for the analysis and design of multi-hop D2D communications, We propose a radio resource allocation for multi-hop D2D routes based on interference avoidance approach in LTE-A networks. On top of that, we investigate the outage probability of D2D communication. We first introduce a new definition of outage probability by considering the maximum distance to be allowable for single-hop transmission. Then we study and analyze the outage performance of a multi-hop D2D route. We derive the general dosed form expression of outage probability of the multi-hop D2D routes. The results demonstrate that the D2D radio, sharing the same resources as the cellular network, provide higher capacity compared to pure cellular communication where all the data is transmitted through the base station. They also demonstrate that the new method of calculation of D2D multi hop outage probability has better performance than classical method defined in the literature.
文摘This paper describes the significant cost saving opportunities for consumers in developing countries by the use of computational intelligence and demand-side-management techniques to mitigate the massive use of diesel back-up during grid outages. Application of load scheduling optimization is investigated during scheduled power outages, for residential consumer in India. The specific load shifting approaches explored include a day ahead predicted load schedule which is generated by performing a DSM referring to the forecasted day ahead outage. Whereas in reality the predicted may not match the actual outage, thus in these cases a fuzzy logic rule base is referred on real time basis to take corrective action & reach the best optimal load schedule possible to attain the lowest cost. The load types modeled include passive loads and schedulable, i.e. typically heavy loads. It is found that this multi-level DSM schemes show excellent benefits to the consumer. The maximum diesel savings for the consumer due to load shifting can be approximately ranging from 45% to as high as 75% for a flat-tariff grid. The study also showed that the actual savings potential depends on the timing of power outage, duration and the specific load characteristics.
文摘In the restructured electricity market,microgrid(MG),with the incorporation of smart grid technologies,distributed energy resources(DERs),a pumped-storage-hydraulic(PSH)unit,and a demand response program(DRP),is a smarter and more reliable electricity provider.DER consists of gas turbines and renewable energy sources such as photovoltaic systems and wind turbines.Better bidding strategies,prepared by MG operators,decrease the electricity cost and emissions from upstream grid and conventional and renewable energy sources(RES).But it is inefficient due to the very high sporadic characteristics of RES and the very high outage rate.To solve these issues,this study suggests non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ)for an optimal bidding strategy considering pumped hydroelectric energy storage and DRP based on outage conditions and uncertainties of renewable energy sources.The uncertainty related to solar and wind units is modeled using lognormal and Weibull probability distributions.TOU-based DRP is used,especially considering the time of outages along with the time of peak loads and prices,to enhance the reliability of MG and reduce costs and emissions.
文摘To solve the coverage and quality problems caused by cell outage in LTE networks, this paper proposes a distributed self-organizing networks management architecture and a distributed cell outage compensation management mechanism. After detecting and analyzing the outage, a cell outage compensation algorithm based on reference signal power adjustment is proposed. The simulation results show that the proposed mechanism can mitigate the performance degradation significantly. Compared with other algorithms, the proposed scheme is more effective in compensating the coverage gap induced by cell outage
基金supported in part by the National Natural Science Foundation of China under Grant 62201451in part by the Young Talent fund of University Association for Science and Technology in Shaanxi under Grant 20210121+1 种基金in part by the Shaanxi provincial special fund for Technological innovation guidance(2022CGBX-29)in part by BUPT Excellent Ph.D.Students Foundation under Grant CX2022106.
文摘This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all transceivers are considered.After harvesting energy and decoding messages simultaneously via a power splitting scheme,the energy-limited relay node forwards the decoded information to both terminals.Each terminal combines the signals from the direct and relaying links via selection combining.We derive the system outage probability under independent but non-identically distributed Nakagami-m fading channels.It reveals an overall system ceiling(OSC)effect,i.e.,the system falls in outage if the target rate exceeds an OSC threshold that is determined by the levels of HIs.Furthermore,we derive the diversity gain of the considered network.The result reveals that when the transmission rate is below the OSC threshold,the achieved diversity gain equals the sum of the shape parameter of the direct link and the smaller shape parameter of the terminalto-relay links;otherwise,the diversity gain is zero.This is different from the amplify-and-forward(AF)strategy,under which the relaying links have no contribution to the diversity gain.Simulation results validate the analytical results and reveal that compared with the AF strategy,the SWIPT based two-way relaying links under the DF strategy are more robust to HIs and achieve a lower system outage probability.
文摘A tightly coupled GPS ( global positioning system )/SINS ( strap down inertial navigation system) based on a GMDH ( group method of data handling) neural network was presented to solve the problem of degraded accuracy for less than four visible GPS satellites with poor signal quality. Positions and velocities of the satellites were predicted by a GMDH neural network, and the pseudo ranges and pseudo range rates received by the GPS receiver were simulated to ensure the regular op eration of the GPS/SINS Kalman filter during outages. In the mathematical simulation a tightly cou pled navigation system with a proposed approach has better navigation accuracy during GPS outages, and the anti jamming ability is strengthened for the tightly coupled navigation system.
基金supported by the Natural Science Foundation of Anhui Provincial Education Department under Grant No.KJ2013Z048the Natural Science Foundation of Anhui Provincial Colleges and Universities under Grant No.KJ2014A234
文摘In this paper,we consider a wireless ad hoc network consisting of multiple source nodes transmitting to their respective destinations,where an eavesdropper attempts to intercept their transmissions.We propose an optimal transmission scheduling scheme to defend against the eavesdropper,where a source node having the highest secrecy rate is scheduled to access the wireless medium for transmitting to its destination in an opportunistic manner.To be specific,the secrecy rate between a pair of the source and destination in the presence of an eavesdropper varies temporally due to the wireless fading effect.The proposed optimal transmission scheduling scheme opportunistically selects a source node with the highest secrecy rate to transmit its data for the sake of maximizing the security of the ad hoc network against eavesdropping attacks.For comparison purposes,we also consider the conventional round-robin scheduling as a benchmark,where multiple source nodes take turns in accessing their shared wireless medium for transmitting to their respective destinations.We derive closed-form secrecy outage probability expressions of both the round-robin scheduling and the proposed optimal scheduling schemes over Rayleigh fading environments.Numerical results show that the proposed transmission scheduling scheme outperforms the conventional round-robin method in terms of its secrecy outage probability.Additionally,upon increasing the number of source-destination pairs,the secrecy outage probability of the round-robin scheme keeps unchanged,whereas the secrecy outage performance of the proposed transmission scheduling significantly improves,showing the security benefits of exploiting transmission scheduling for protecting wireless ad hoc networks against eavesdropping.
基金supported in part by the National Science Foundation of China under Grant 61901185 and Grant 61971205。
文摘Heterogeneous networks(Het Nets)attracts a lot of attention due to its high capacity and large coverage for future communication networks.However,with the large-scale deployment of small cells,HetNets bears dramatically increasing backhaul,which leads to a decrease of the outage performance.To improve the outage performance of Het Nets,we propose a wireless backhaul scheme for a two-layer HetNets,which automatically switches the three basic modes of orthogonal multiple access(OMA),nonorthogonal multiple access(NOMA)and cooperative non-orthogonal multiple access(CNOMA).First,we analyze the backhaul capacity and outage performance of these three basic modes.Then,we design the power allocation schemes based on minimizing outage probability for NOMA and CNOMA.Using the designed power allocation schemes,we propose a wireless backhaul scheme that switches the three modes according to the channel quality among different base stations(BSs).Moreover,the closed-form of the corresponding outage probability is derived.Compared with the three basic modes,the proposed wireless backhaul scheme can achieve the best outage performance and a higher backhaul capacity.Finally,all the analytical results are validated by simulations.
基金supported by the Natural Sciences and Engineering Research Council of Canada under Grant No. STPGP 396756partly supported by the National Natural Science Foundation of China under Grant No. 6110-1096the Natural Science Foundation of Hunan Province under Grant No. 11JJ4055.
文摘The outage probability of a composite microscopic and macroscopic diversity system is evaluated over correlated shadowed fading channels.The correlations on both a microlevel and macrolevel are taken into account for the evaluations.The expression of the desired outage probability is explicitly presented,and two evaluation approaches,i.e.a compact Gaussian-Hermite quadrature method and an effective iterative algorithm,are proposed.The accuracy and efficiency of the proposed approaches are analysed,and a guideline is provided for their application.By employing the proposed evaluation approaches,results and demonstrations are presented,which display the implied effects of the corresponding parameters on the system outage performance,and reveal the potential to facilitate the design and analysis of such composite diversity systems.
基金supported by the joint state key program of the NSFC of China and the national railway ministry of China (Grant No.6083001)program for Changjiang scholars and innovative research team in University (Grant No.IRT0949)the programs of state key laboratory of traffic control and safety (RCS2008ZZ006 and RCS2008ZZ007)
文摘In the promising cooperative communication systems,network performance is mainly affected by interference instead of noise.In this paper,we consider the performance degraded by the Poisson filed interference in the dual-hop relay channels.We focus on the discussions of error outage probability (EOP) performance with a selective-decode-and-forward (SDF),amplify-and-forward (AF),or fixed-decode-and-forward (DF) cooperation protocol.Finally,the simulation results present the performance with different cooperation protocols with interference in a Poisson field.
基金supported by Major National Science & Technology Specific Project under Grant No. 2009ZX03003-003-01
文摘This paper proposes a modified decodeand-forward(DAF) protocol with a three-node model,which contains two users and one destination.Each user can be either the source or the relay in different frames.We analyze the four cooperative cases in the first frame and run simulations to obtain the optimal power allocation coefficients in the second frame.The closed-form expression of outage probability is derived over Nakagami-m fading channels.Furthermore,we show that the proposed model has better performance than the non-cooperation system and traditional DAF strategy based on the derived outage probability.
基金supported by the High Technology Research and Development Project of China (No. 2009AA110302)the National Natural Science Foundation of China (No. 60830001)+2 种基金the State Key Laboratory of Rail Traffi c Control and Safety (No. RCS2008ZZ006, No.RCS2008ZZ007)the program for Changjiang Scholars and Innovative Research Team in University (No. IRT0949)the innovation funding for outstanding PhD candidates of Beijing Jiaotong University (No. 141059522)
文摘This paper presents an outage analysis of distributed antennas system(DAS) suffering from shadowed Nakagami-m fading environment where the desired signal also suffers from co-channel interference. The desired signal and interfering signal are subjected to path loss,multipath and shadowing fading. Based on Wilkinson's method,the signal to interference ratio(SIR) probability density function(PDF) of fixed DAS is obtained. Some numerical results of outage probability with different parameters are analyzed. The analysis results can provide sufficient precision for evaluating the outage performance of DAS.
基金The National Natural Science Foundation of China(No.61571123,61521061)the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2018A03,2019A03)+1 种基金the National Major Science and Technology Project(No.2017ZX03001002-004)the 333 Program of Jiangsu Province(No.BRA2017366)
文摘In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection algorithm is proposed.By the improved collaborative filtering prediction algorithm,the location correlation of users in the wireless network is considered.By incorporating the cooperative grey model prediction algorithm,the time correlation of users motion trajectory is also introduced.Data of users in a normal scenario is simulated and collected for model training and threshold calculating and the outage cell can be effectively detected using the proposed approach.The simulation results demonstrate that the proposed scheme has a higher detection rate for different extents of outage while ensuring the lower communication overhead and false alarm rate than traditional outage detection methods.The detection rate of the proposed approach outperforms the traditional method by around 14%,especially when there are sparse users in the network,and it is able to detect the outage cell with no active users with the help of neighbor cells.