期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于变量筛选和OS-KELM的出口SO_(2)浓度预测
1
作者 金秀章 陈佳政 张瑾 《华北电力大学学报(自然科学版)》 北大核心 2026年第1期149-158,共10页
针对火力发电厂频繁调峰导致锅炉燃烧不稳定、出口SO_(2)浓度波动范围大难以准确、及时测量的问题,提出了一种基于变量筛选和在线核极限学习机的出口SO_(2)浓度预测模型。首先通过机理分析选择与出口SO_(2)浓度有关的影响变量;再利用基... 针对火力发电厂频繁调峰导致锅炉燃烧不稳定、出口SO_(2)浓度波动范围大难以准确、及时测量的问题,提出了一种基于变量筛选和在线核极限学习机的出口SO_(2)浓度预测模型。首先通过机理分析选择与出口SO_(2)浓度有关的影响变量;再利用基于FCBF改进的mRMR算法去除冗余变量,并对筛选后的变量使用K近邻互信息算法进行时延补偿;然后对补偿后的变量利用变分模态分解(VMD)进行分解,选择相关性最大的变量子集作为最终模型输入;最后利用天牛群算法(Beetle swarm optimization,BSO)优化在线核极限学习机(Online sequential-kernel based extreme learning machine,OS-KELM)参数建立出口SO_(2)浓度预测模型。利用电厂真实运行数据进行实验,结果表明,基于OS-KELM的预测模型其预测效果优于ELM、KELM、OS-ELM模型,具有较高的模型预测精度。 展开更多
关键词 变量筛选 VMD分解 时延补偿 K近邻互信息 天牛群算法 在线核极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部