期刊文献+
共找到144篇文章
< 1 2 8 >
每页显示 20 50 100
Symplectic solutions for orthotropic micropolar plane stress problem
1
作者 Long Chen Zhaofei Tang +1 位作者 Qiong Wu Qiang Gao 《Acta Mechanica Sinica》 2025年第1期106-127,共22页
The symplectic approach was utilized to derive solutions to the orthotropic micropolar plane stress problem.The Hamiltonian canonical equation was first obtained by applying Legendre’s transformation and the Hamilton... The symplectic approach was utilized to derive solutions to the orthotropic micropolar plane stress problem.The Hamiltonian canonical equation was first obtained by applying Legendre’s transformation and the Hamiltonian mixed energy variational principle.Then,by using the method of separation of variables,the eigenproblem of the corresponding homogeneous Hamiltonian canonical equation was derived.Subsequently,the corresponding eigensolutions for three kinds of homogeneous boundary conditions were derived.According to the adjoint symplectic orthogonality of the eigensolutions and expansion theorems,the solutions to this plane stress problem were expressed as a series expansion of these eigensolutions.The numerical results for the orthotropic micropolar plane stress problem under various boundary conditions were presented and validated using the finite element method,which confirmed the convergence and accuracy of the proposed approach.We also investigated the relationship between the size-dependent behaviour and material parameters using the proposed approach.Furthermore,this approach was applied to analyze lattice structures under an equivalent micropolar continuum approximation. 展开更多
关键词 Symplectic approach MICROPOLAR orthotropic materials Size effect Analytical solution
原文传递
Impact of Stiffener Configuration on the Structural Performance of Orthotropic Steel Bridge Deck
2
作者 Pinyi Zhao Yu Qin +3 位作者 Bo Wu Yu Chen Xingyu Chen Jinsheng Wen 《Structural Durability & Health Monitoring》 2025年第5期1367-1386,共20页
The impact of longitudinal stiffener configurations on the structural performance of orthotropic steel bridge decks(OSD)was systematically investigated,with emphasis on U-shaped,T-shaped,and rectangular ribs.Finite el... The impact of longitudinal stiffener configurations on the structural performance of orthotropic steel bridge decks(OSD)was systematically investigated,with emphasis on U-shaped,T-shaped,and rectangular ribs.Finite element analysis was employed to evaluate deformation and stress distribution under three critical loading scenarios:vertical uniformload,vertical eccentric load,and lateral uniformload.Equivalentmodels ensuring identical steel usage,moment of inertia,and centroid alignment were established to compare five stiffener configurations.Results demonstrate that U-rib configurations exhibit superior performance in controlling local displacements and minimizing stress concentrations.Under eccentric loading,U-ribs significantly reduce deck displacement andmitigate stress fluctuations at critical junctions compared to alternative stiffeners.Stability analysis further reveals that U-ribs achieve stability coefficients substantially higher than open-section alternatives,particularly excelling under lateral loading due to enhanced torsional rigidity.Parametric optimization identifies key geometric thresholds where U-rib thickness exceeding 6 mm yields diminishing returns in stress reduction and stability enhancement,while deck flange thickness beyond 16 mm provides marginal improvements in displacement control despite increased material usage.An optimized design combining 6-mm U-ribs with 16-mm deck flanges is proposed,balancing structural efficiency with stringent deformation requirements for high-speed rail bridges.These findings provide foundational insights for optimizing stiffener selection and enhancing the longevity of orthotropic steel bridge decks in heavy-load applications. 展开更多
关键词 orthotropic steel bridge deck(OSD) finite element analysis longitudinal stiffeners U-rib stress distribution
在线阅读 下载PDF
Influence of Porosity on Vibration of Porous FG Plates Resting on an Arbitrarily Orthotropic Winkler-Pasternak Foundation by PDDO
3
作者 Yongyu Yang Xiaoqi Wang +3 位作者 Hang Zhao Chao Wang Changzheng Cheng Raj Das 《Acta Mechanica Solida Sinica》 2025年第1期142-151,共10页
This paper studies the vibration responses of porous functionally graded(FG)thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential oper... This paper studies the vibration responses of porous functionally graded(FG)thin plates with four various types of porous distribution based on the physical neutral plane by employing the peridynamic differential operator(PDDO).It is assumed that density and elastic modulus continuously vary along the transverse direction following the power law distribution for porous FG plates.The governing differential equation of free vibration for a porous rectangular FG plate and its associated boundary conditions are expressed by a Lévy-type solution based on nonlinear von Karman plate theory.Dimensionless frequencies and mode shapes are obtained after solving the characteristic equations established by PDDO.The results of the current method are validated through comparison with existing literature.The effects of geometric parameters,material properties,elastic foundation,porosity distribution,and boundary conditions on the frequency are investigated and discussed in detail.The highest fundamental dimensionless frequency occurs under SCSC boundary conditions,while the lowest is under SFSF boundary conditions.The porous FG plate with the fourth pore type,featuring high density of porosity at the top and low at the bottom,exhibits the highest fundamental frequency under SSSS,SFSF,and SCSC boundary conditions.The dimensionless frequency increases with an increase in the elastic foundation stiffness coefficient. 展开更多
关键词 Vibration response Porous FG plate orthotropic Winkler-Pasternak foundation PDDO
原文传递
Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction 被引量:2
4
作者 Huitao Yu Lianqiang Peng +2 位作者 Can Chen Mengmeng Qin Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期136-148,共13页
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff... Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes. 展开更多
关键词 orthotropic continuous structures Hybrid carbon networks Carbon/polymer composites Thermal interface materials
在线阅读 下载PDF
Vibration of black phosphorus nanotubes via orthotropic cylindrical shell model
5
作者 Minglei He Lifeng Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期166-173,共8页
Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingopti... Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingoptimized nanodevices.In this paper,the mechanical behaviour and vibration property of BPNTs are studied viaorthotropic cylindrical shell model and molecular dynamics(MD)simulation.The vibration frequencies of twochiral BPNTs are analysed systematically.According to the results of MD calculations,it is revealed that thenatural frequencies of two BPNTs with approximately equal sizes are unequal at each order,and that the naturalfrequencies of armchair BPNTs are higher than those of zigzag BPNTs.In addition,an armchair BPNTs witha stable structure is considered as the object of research,and the vibration frequencies of BPNTs of differentsizes are analysed.When comparing the MD results,it is found that both the isotropic cylindrical shell modeland orthotropic cylindrical shell model can better predict the thermal vibration of the lower order modes of thelonger BPNTs better.However,for the vibration of shorter and thinner BPNTs,the prediction of the orthotropiccylindrical shell model is obviously superior to the isotropic shell model,thereby further proving the validity ofthe shell model that considers orthotropic for BPNTs. 展开更多
关键词 orthotropic cylindrical shell Molecular dynamics simulation Black phosphorus nanotube VIBRATION
在线阅读 下载PDF
Finite element simulation and optimal analysis of surfacing on steel orthotropic bridge deck 被引量:2
6
作者 谭积青 徐伟 张肖宁 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期539-543,共5页
To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the ... To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the whole bridge structure and tyre load are analyzed by the finite element method of submodeling. Influence of surfacing modulus on the strain state of the overlay is analyzed for the purpose of the optimal design of the overlay structure. Analysis results show that the deformation of the whole bridge structure has no evident influence on the stress state of the overlay. The key factor of the overlay design is the transverse tensile strain in the overlay above the upper edge of web plate of rib. The stress state of the overlay is influenced evidently by the modulus of rigidity transform overlay. And the stress state of the overlay can be optimized and lowered by increasing the modulus and thickness of rigidity transform overlay, The fatigue test has been done to evaluate the fatigue performance and modulus of different deck pavement materials such as epoxy asphalt, SBS modified asphalt, rosphalt asphalt which can provide reference for deck pavement structure design. 展开更多
关键词 steel orthotropic deck bridge deck overlay finite element submodeling optimal analysis fatigue test
在线阅读 下载PDF
PIEZORESISTANCE CHARACTERISTICS OF ORTHOTROPIC MATERIALS
7
作者 肖军 樊蔚勋 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第1期107-110,共4页
In this paper three important characteristics in piezoresistance for the orthotropic material are given and proved theoretically:(1) The piezoresistance on the principal axis of an orthotropic material is independent ... In this paper three important characteristics in piezoresistance for the orthotropic material are given and proved theoretically:(1) The piezoresistance on the principal axis of an orthotropic material is independent of shear strains/stresses, but correlated with the normal strains/stresses only;(2) On the principal axis of material, following relations between piezoconductivity and piezoresistivity exist η iikk =-(γ ii ) -2 ξ iikk =-(ρ ii ) 2ξ iikk λ iikk =-(γ ii ) -2 χ iikk =-(ρ ii ) 2χ iikk (3) A laminate composed of orthotropic laminae in different orientations is orthotropic for its average/effective properties. 展开更多
关键词 orthotropic MATERIALS principal AXIS of MATE rial piezoconductivity PIEZORESISTIVITY
在线阅读 下载PDF
Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables 被引量:10
8
作者 Hong-Ling Ye Wei-Wei Wang +1 位作者 Ning Chen Yun-Kang Sui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期899-911,共13页
The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, conti... The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion. 展开更多
关键词 Topology optimization Buckling constraints orthotropic material Plate/shell structure ICM method
在线阅读 下载PDF
Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation 被引量:5
9
作者 Wei-An Yao Xiao-Fei Hu Feng Xiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期929-937,共9页
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish d... This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method. 展开更多
关键词 orthotropic plate Symplectic space Winklerelastic foundation Analytical solution
在线阅读 下载PDF
Effect of hot/warm roll-forming process on microstructural evolution and mechanical properties of local thickened U-rib for orthotropic steel deck 被引量:5
10
作者 Xue-feng Peng Jing Liu +1 位作者 Jing-tao Han Dong-bin Wei 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第3期335-342,共8页
To improve the strength-toughness of traditional U-rib( TUR) and solve the problem of insufficient penetration between TUR and deckplate,a new local thickened U-rib( LTUR) has been proposed to improve the fatigue ... To improve the strength-toughness of traditional U-rib( TUR) and solve the problem of insufficient penetration between TUR and deckplate,a new local thickened U-rib( LTUR) has been proposed to improve the fatigue resistance of the weld joint under the premise of not increasing thickness and strength of the TUR material. And a hot /warm roll-forming process( RFP) adopting partially induction heating to 700- 1 000℃ was carried out to fabricate LTUR. The deformation behaviors in the forming process and microstructure of LTUR have been investigated.Mechanical properties and fracture mechanism of the LTUR after hot / warm RFP have been systematically discussed. Moreover,the results are compared with those obtained in cold RFP. Mechanical properties of the LTUR deformed above the critical transformation temperature( A_(c3)) show high performance characteristics with marked fatigue resistance and superior toughness. Upon increasing the heating temperature from 700 to 900 ℃,the initial coarse ferrite-pearlite structure transform into equiaxed ultrafine ferrite( 1- 3 μm) and precipitates such as( Nb,Ti)( C,N) are uniformly distributed in the matrix. The average dislocation density of the specimens after hot rollforming at heating temperature of 900 ℃ decreases dramatically compared with those of the specimens subjected to the cold RFP. Furthermore,a typical characteristic of ductile fracture mechanism and the high impact energy are more convinced that the specimens deformed above 900 ℃ have obtained an optimal combination of strength and toughness. 展开更多
关键词 orthotropic steel deck Local thickened U-rib Hot roll-forming PROCESS Warm roll-forming PROCESS Microstructural evolution Deformation behavior
原文传递
An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets 被引量:4
11
作者 Xinsheng Xu Dalun Rong +2 位作者 C.W.Lim Changyu Yang Zhenhuan Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期912-925,共14页
A nonlocal continuum orthotropic plate model is proposed to study the vibration behavior of single-layer graphene sheets (SLGSs) using an analytical symplectic approach. A Hamiltonian system is established by introduc... A nonlocal continuum orthotropic plate model is proposed to study the vibration behavior of single-layer graphene sheets (SLGSs) using an analytical symplectic approach. A Hamiltonian system is established by introducing a total unknown vector consisting of the displacement amplitude, rotation angle, shear force, and bending moment. The high-order governing differential equation of the vibration of SLGSs is transformed into a set of ordinary differential equations in symplectic space. Exact solutions for free vibration are obtianed by the method of separation of variables without any trial shape functions and can be expanded in series of symplectic eigenfunctions. Analytical frequency equations are derived for all six possible boundary conditions. Vibration modes are expressed in terms of the symplectic eigenfunctions. In the numerical examples, comparison is presented to verify the accuracy of the proposed method. Comprehensive numerical examples for graphene sheets with Levy-type boundary conditions are given. A parametric study of the natural frequency is also included. 展开更多
关键词 Hamiltonian system Analytical method Nonlocal elasticity theory orthotropic graphene sheet Natural frequency
在线阅读 下载PDF
A THREE-DIMENSIONAL SOLUTION FOR LAMINATED ORTHOTROPIC RECTANGULAR PLATES WITH VISCOELASTIC INTERFACES 被引量:5
12
作者 Yan Wei Ying Ji Chen Weiqiu 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期181-188,共8页
When a body consists completely or even partly of viscoelastic materials, its response under static loading will be time-dependent. The adhesives used to glue together single plies in laminates usually exhibit a certa... When a body consists completely or even partly of viscoelastic materials, its response under static loading will be time-dependent. The adhesives used to glue together single plies in laminates usually exhibit a certain viscoelastic characteristic in a high temperature environment. In this paper, a laminated orthotropic rectangular plate with viscoelastic interfaces, described by the Kelvin-Voigt model, is considered. A power series expansion technique is adopted to approximate the time-variation of various field quantities. Results indicate that the response of the laminated plate with viscoelastic interfaces changes remarkably with time, and is much different from that of a plate with spring-like or viscous interfaces. 展开更多
关键词 laminated orthotropic plate state-space method viscoelastic interfaces KelvinVoigt model
在线阅读 下载PDF
Time-reverse location of microseismic sources in viscoelastic orthotropic anisotropic medium based on attenuation compensation 被引量:4
13
作者 Tang Jie Liu Ying-Chang +1 位作者 Wen Lei Li Cong 《Applied Geophysics》 SCIE CSCD 2020年第4期544-560,共17页
Time reversal is a key component of time-reverse migration and source location using wavefield extrapolation.The implementation of time reversal depends on the time symmetry of wave equations in acoustic and elastic m... Time reversal is a key component of time-reverse migration and source location using wavefield extrapolation.The implementation of time reversal depends on the time symmetry of wave equations in acoustic and elastic media.This symmetry in time is no longer valid in attenuative medium.Not only the velocity is anisotropic in shale oil and gas reservoirs,but also the attenuation is usually anisotropic,which can be characterized by viscoelastic orthotropic media.In this paper,the fractional order viscoelastic anisotropic wave equation is used to decouple the energy dissipation and the velocity dispersion.By changing the sign of the dissipation term during backpropagation,the anisotropic attenuation is compensated and the time symmetry is restored.The attenuation compensation time-reverse location algorithm can eff ectively locate the source in viscoelastic orthotropic media.Compared to cases without attenuation compensation or using isotropic attenuation compensation,this method can remove location error caused by anisotropic attenuation and improve the imaging eff ect of the source.This paper verifi es the eff ectiveness of the method through theoretical analysis and model testing. 展开更多
关键词 Viscoelastic orthotropic anisotropy microseismic time-reverse location fractional order attenuation compensation
在线阅读 下载PDF
EXACT SOLUTION FOR ORTHOTROPIC MATERIALS WEAKENED BY DOUBLY PERIODIC CRACKS OF UNEQUAL SIZE UNDER ANTIPLANE SHEAR 被引量:4
14
作者 Junhua Xiao Chiping Jiang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第1期53-63,共11页
Orthotropic materials weakened by a doubly periodic array of cracks under far-field antiplane shear are investigated, where the fundamental cell contains four cracks of unequal size. By applying the mapping technique,... Orthotropic materials weakened by a doubly periodic array of cracks under far-field antiplane shear are investigated, where the fundamental cell contains four cracks of unequal size. By applying the mapping technique, the elliptical function theory and the theory of analytical function boundary value problems, a closed form solution of the whole-field stress is obtained. The exact formulae for the stress intensity factor at the crack tip and the effective antiplane shear modulus of the cracked orthotropic material are derived. A comparison with the finite element method shows the efficiency and accuracy of the present method. Several illustrative examples are provided, and an interesting phenomenon is observed, that is, the stress intensity factor and the dimensionless effective modulus are independent of the material property for a doubly periodic cracked isotropic material, but depend strongly on the material property for the doubly periodic cracked orthotropic material. Such a phenomenon for antiplane problems is similar to that for in-plane problems. The present solution can provide benchmark results for other numerical and approximate methods. 展开更多
关键词 orthotropic material a doubly periodic array of cracks antiplane shear boundary value problem stress intensity factor effective modulus
在线阅读 下载PDF
FURTHER IMPROVEMENT ON FUNDAMENTAL SOLUTIONS OF PLANE PROBLEMS FOR ORTHOTROPIC MATERIALS 被引量:4
15
作者 Sun Xiushan Cen Zhangzhi 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第2期171-181,共11页
On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials ar... On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials are obtained. Two parametersbased on material constants a_1, a_2 are used to derive the rele-vant expressions in a real variable form. Additionally, an analyticalmethod of solving the singular integral for the internal stresses isintroduced, and the corresponding result are given. If a_1=a_2=1, allthe expres- sions obtained for orthotropy can be reduced to thecorresponding ones for isotropy. Because all these expres- sions andresults can be directly used for both isotropic problems andorthotropic problems, it is convenient to use them in engineeringwith the boundary element method (BEM). 展开更多
关键词 BEM fundamental solution plane elastoplastic problem orthotropic material
在线阅读 下载PDF
Interaction formulae for buckling and failure of orthotropic plates under combined axial compression/tension and shear 被引量:3
16
作者 Binwen WANG Xiangming CHEN +3 位作者 Xiasheng SUN Puhui CHEN Zhe WANG Ya’nan CHAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期272-280,共9页
An interaction function was constructed based on the axial compression/tension and shear loads of orthotropic plates.The coefficients of the polynomial function were determined by uniaxial test results.Buckling intera... An interaction function was constructed based on the axial compression/tension and shear loads of orthotropic plates.The coefficients of the polynomial function were determined by uniaxial test results.Buckling interaction and failure interaction formulae under combined axial tension/compression and shear loads were established.Based on the uniaxial load test results of orthotropic plates,the buckling load and bearing capacity under any proportion of the combined loads could be predicted by using the proposed interaction formulae.The buckling interaction curves and failure envelopes predicted by the proposed interaction formulae were in excellent agreement with the test results. 展开更多
关键词 BUCKLING Combined loads FAILURE Interaction formulae orthotropic plate
原文传递
THE EVALUATION OF STRESS INTENSITY FACTORS OF PLANE CRACK FOR ORTHOTROPIC PLATE WITH EQUAL PARAMETER BY F2LFEM 被引量:3
17
作者 Fan Jie Zhang Xiaochun +1 位作者 A.Y.T. LEUNG Zhong Weifang 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期128-134,共7页
In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solutio... In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solution of an orthotropic crack problem is obtained by assimilating the problem with isotropic crack problem, and is employed as the global interpolation function in F2LFEM. In the neighborhood of crack tip of the crack plate, the fractal geometry concept is introduced to achieve the similar meshes having similarity ratio less than one and generate an infinitesimal mesh so that the relationship between the stiffness matrices of two adjacent layers is equal. A large number of degrees of freedom around the crack tip are transformed to a small set of generalized coordinates. Numerical examples show that this method is efficient and accurate in evaluating the stress intensity factor (SIF). 展开更多
关键词 plane crack orthotropic plate fractal finite element stress intensity factor
在线阅读 下载PDF
The analytical solutions for orthotropic cantilever beams (Ⅰ):Subjected to surface forces 被引量:2
18
作者 江爱民 丁皓江 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第2期126-131,共6页
This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of ... This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of distinct eigenvalues, a series of beam problems, including the problem of cantilever beam under uniform loads, cantilever beam with axial load and bending moment at the free end, cantilever beam under the first, second, third and fourth power ofx tangential loads, is solved by the superposition principle and the trial-and-error methods. 展开更多
关键词 General solution orthotropic media Cantilever beams Analytical solutions
在线阅读 下载PDF
Analysis of stress intensity factor in orthotropic bi-material mixed interface crack 被引量:2
19
作者 赵文彬 张雪霞 +1 位作者 崔小朝 杨维阳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第10期1271-1292,共22页
Adopting the complex function approach, the paper studies the stress intensity factor in orthotropic bi-material interface cracks under mixed loads. With con- sideration of the boundary conditions, a new stress functi... Adopting the complex function approach, the paper studies the stress intensity factor in orthotropic bi-material interface cracks under mixed loads. With con- sideration of the boundary conditions, a new stress function is introduced to transform the problem of bi-material interface crack into a boundary value problem of partial dif- ferential equations. Two sets of non-homogeneous linear equations with 16 unknowns are constructed. By solving the equations, the expressions for the real bi-material elastic constant εt and the real stress singularity exponents λt are obtained with the bi-material engineering parameters satisfying certain conditions. By the uniqueness theorem of limit, undetermined coefficients are determined, and thus the bi-material stress intensity factor in mixed cracks is obtained. The bi-material stress intensity factor characterizes features of mixed cracks. When orthotropic bi-materials are of the same material, the degenerate solution to the stress intensity factor in mixed bi-material interface cracks is in complete agreement with the present classic conclusion. The relationship between the bi-material stress intensity factor and the ratio of bi-material shear modulus and the relationship be- tween the bi-material stress intensity factor and the ratio of bi-material Young's modulus are given in the numerical analysis. 展开更多
关键词 interface crack stress intensity factor BI-MATERIAL orthotropic complexvariable method
在线阅读 下载PDF
Mathematical Modelling and 3D FEM Analysis of the Influence of Initial Stresses on the ERR in a Band Crack’s Front in the Rectangular Orthotropic Thick Plate 被引量:2
20
作者 Arzu Turan Dincel Surkay DAkbarov 《Computers, Materials & Continua》 SCIE EI 2017年第3期249-270,共22页
This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initial... This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes.The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located.After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal forces and the ERR caused with this additional loading is studied.The corresponding boundary value problem is formulated within the scope of the so-called 3D linearized theory of elasticity which allows the initial stress on the values of the ERR to be taken into consideration.Numerical results on the influence of the initial stress,anisotropy properties of the plate material,the crack’s length and its distance from the face planes of the plate on the values of the ERR,are presented and discussed.In particular,it is established that for the relatively greater length of the crack’s band,the initial stretching of the plate causes a decrease,but the initial compression causes an increase in the values of the ERR. 展开更多
关键词 Band crack energy release rate stress intensity factor initial stress orthotropic material rectangular plate 3D FEM
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部