The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogram...The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.展开更多
Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(F...Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(FMSs)derived from earthquake data and formation micro-imager(FMI)data from well logs.However,these techniques can be costly,depth-inaccurate,and may lack spatial coverage.To address this issue,we introduce the use of three-dimensional(3D)seismic data(active sources)as a lateral constraint to approximate the 3D stress orientation field.Recognizing that both stress and fracture patterns are closely related to seismic velocity anisotropy,we derive the orientation of azimuthal anisotropy from multi-azimuth 3D seismic data to compensate for the lack of spatial stress orientation information.We apply our proposed workflow to a case study in the Weiyuan area of the Sichuan Basin,China,a region targeted for shale gas production.By integrating diverse datasets,including 3D seismic,earthquakes,and well logs,we develop a comprehensive 3D model of in-situ stress(orientations and magnitudes).Our results demonstrate that the estimated anisotropy orientations from 3D seismic data are consistent with the direction of maximum horizontal principal stress(SHmax)obtained from FMIs.We analyzed 12 earthquakes(magnitude>3)recorded between 2016 and 2020 for their FMSs and compressional axis(P-axis)orientations.The derived SHmax direction from our 3D stress model is 110°ES(East-South),which shows excellent agreement with the FMSs(within 3.96°).This close alignment validates the reliability and precision of our integrated method for predicting 3D SHmax orientations.展开更多
The rapid advancement of the bioeconomy imposes increasingly stringent demands on bioengineering education.Drawing on data from the 2025 Chinese Undergraduate Employment Report and related sources,this study revealed ...The rapid advancement of the bioeconomy imposes increasingly stringent demands on bioengineering education.Drawing on data from the 2025 Chinese Undergraduate Employment Report and related sources,this study revealed that while employment placement rates for bioengineering graduates remain stable,starting salaries exhibit limited growth and career trajectories lack clarity.These challenges originate from a curriculum lagging behind technological progress,inadequate practical training,and a mismatch between student competencies and industry expectations.To address these issues,this paper proposed a strategic framework grounded in"demand-driven design,industry-education integration,and competence-centered development".Key strategies include dynamic curriculum renewal,collaborative university-industry training,holistic competency development,and personalized student support,which collectively aim at enhancing graduates employment competitiveness and long-term professional sustainability.展开更多
The origin of the misorientations after fcc(face-centered cubic)to hcp(hexagonal close-packed)transformation in pure cobalt was elucidated by utilizing the electron backscatter diffraction(EBSD)technique and transform...The origin of the misorientations after fcc(face-centered cubic)to hcp(hexagonal close-packed)transformation in pure cobalt was elucidated by utilizing the electron backscatter diffraction(EBSD)technique and transformation crystallographic models.It is found the Shoji−Nishiyama orientation relationship during fcc→hcp transformation leads to four hcp variants,characterized by a common misorientation angle of 70.5°with respect to the<1120>direction,which is the predominant misorientation observed.Other statistically significant misorientation angles between hcp grains,including 32°,36°,38°,60°,71°and 86°−91°,are also identified.These newly observed misorientation angles are linked to the microstructure of the fcc matrix at elevated temperatures,with twin structures in the fcc matrix being the primary cause.Furthermore,a novel method is proposed for estimating the fraction of twins in the fcc grains based on misorientation angles between hcp variants,which is found to be consistent with experimental observations.In-situ EBSD observations validate the possible origin of fcc twins from the hcp→fcc transformation.展开更多
A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and ...A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and structural yield strength can be simultaneously adjusted by integrating the overall process-structure-performance relationship of the AM process into the optimization.Specifically,the transverse isotropic material model is adopted to describe the material properties induced by the layer-by-layer manner of additive manufacturing.To bolster lattice strength performance,the stress constraints and ratio constraints of lattice struts are employed.The Tsai-Wu yield criterion is implemented to characterize the lattice strut's strength,while the P-norm method streamlines the handling of multiple constraints,minimizing computational overhead.Moreover,the gradient-based optimization model is established,where both the individual struts diameters and BO can be designed,and the buckling-prone spatial struts are strategically eliminated to improve the lattice strength further.Furthermore,several typical structures are optimized to verify the effectiveness of the proposed method.The optimized results are quite encouraging since the heterogeneous lattice structures with optimized BO obtained by the strength-based concurrent method show a remarkably improved performance compared to traditional designs.展开更多
In the wave of internet culture,short videos have become an indispensable medium for social communication.The metaphorical hot words contained within them serve as a unique linguistic phenomenon that leads topics and ...In the wave of internet culture,short videos have become an indispensable medium for social communication.The metaphorical hot words contained within them serve as a unique linguistic phenomenon that leads topics and focuses attention,greatly enriching the expressive layers and rhetorical charm of short videos,and significantly enhancing the video’s theme orientation and emotional identification.This research aims to explore the relationship between the use of metaphorical Internet buzzwords in short videos and the thematic and emotional orientation.The study adopts a combination of qualitative and quantitative methods,taking 10 videos with over 10,000 likes posted by a well-known blogger on Xiaohongshu in 2024 as the research object,transcribing the text,forming research corpora,and conducting multi-dimensional cognitive analysis on them.The study shows that about half of short videos contain metaphorical hot words.Different types of metaphorical hot words can trigger different emotional reactions from fans,especially humorous metaphorical hot words that can stimulate fans’emotional identification and resonance.In addition,in terms of fan participation,videos using metaphorical hot words tend to attract more fan attention than those that do not:these videos not only attract more fans to watch and like,but also trigger more comments and sharing behaviors.In summary,short videos cleverly use metaphors to create internet hot words,significantly enhancing the video’s thematic guidance and emotional resonance,manifested in creating popular topics,clarifying guiding themes,enhancing content attractiveness,and stimulating strong emotional identification,thereby promoting interactive behaviors such as likes and shares.These findings provide a reference for research in related fields such as metaphor,communication studies,and sociology.展开更多
The angular deviations and influential factors of Burgers orientation relationship(BOR)in Ti-6Al-4V and Ti-6.5Al-2Zr-1Mo-1V alloys were investigated by optical microscope(OM),scanning electron microscope(SEM),electron...The angular deviations and influential factors of Burgers orientation relationship(BOR)in Ti-6Al-4V and Ti-6.5Al-2Zr-1Mo-1V alloys were investigated by optical microscope(OM),scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and high-angle annular dark-field scanning transmission electron microscope(HAADF-STEM).A spherical center angle model was introduced to calculate the angular deviations from the ideal BOR between α and β phases.The results indicate thatαand β phases in α colonies of both alloys do not follow the perfect BOR during β→α phase transformation,with angular deviation values less than 3°.Through detailed microstructure characterization,the broad face of α/β interfaces viewed along two different electron incident directions shows the atomic-scale terrace-ledge structure,and many dislocations are observed within α and β phases and near α/β interfaces.Further studies reveal that the angular deviations mainly originate from lattice distortions caused by dislocations in α and β phases and lattice mismatches at α/β interfaces.展开更多
The prediction of the fracture plane orientation in fatigue is a scientific topic and remains relevant for every type of material. However, in this work, we compared the orientation of the fracture plane obtained expe...The prediction of the fracture plane orientation in fatigue is a scientific topic and remains relevant for every type of material. However, in this work, we compared the orientation of the fracture plane obtained experimentally through tests on specimens under multiaxial loading with that calculated by the variance method. In the statistical approach criteria, several methods have been developed but we have presented only one method, namely the variance method using the equivalent stress. She assumes that the fracture plane orientation is the one on which the variance of the equivalent stress is maximum. Three types of equivalent stress are defined for this method [1]: normal stress, shear stress and combined normal and shear stress. The results obtained were compared with experimental results for multiaxial cyclic stress states, and it emerges that the variance method for the case of combined loading is conservative as it gives a better prediction of the fracture plane.展开更多
The miniaturization and high-power density of electronic devices presents new challenges in thermal management.The precise control of microstructure arrangement,particularly in boron nitride nanosheets(BNNS),is essent...The miniaturization and high-power density of electronic devices presents new challenges in thermal management.The precise control of microstructure arrangement,particularly in boron nitride nanosheets(BNNS),is essential for achieving efficient heat dissipation in highly thermally conductive composites within electrically insulating package.In this work,manganese ferrite was hydrothermally synthesized on BNNS,creating a layered structure in a magnetically responsive nanohybrid material named BNNS@M.This material was then integrated into a waterborne polyurethane(WPU)solution and shaped under a magnetic field to produce thermally conductive film.By altering the magnetic field direction,the mi-crostructure orientation of BNNS@M was controlled,resulting in anisotropic thermally conductive com-posite films with horizontal and vertical orientations.Specifically,under a vertical magnetic field,the film 30-Ve-BNNS@WPU,containing 30 wt.%BNNS@M,achieved a through-plane thermal conductivity of 8.5 W m^(−1)K^(−1)and an in-plane thermal conductivity of 1.8 W m^(−1)K^(−1),showcasing significant anisotropic thermal conductivity.Meanwhile,these films demonstrated excellent thermal stability,mechanical per-formance,and flame retardancy.Furthermore,employing Foygel’s theory elucidated the impact of filler arrangement on thermal conductivity mechanisms and the actual application of 5 G device chips and LED lamps emphasizing the potential of these thermally conductive films in thermal management appli-cations.This investigation contributes valuable design concepts and foundations for the development of anisotropic thermally conductive composites suitable for electron thermal management.展开更多
The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key ...The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.展开更多
Bismuth oxybromide(BiOBr)is being actively researched as a promising anode material for aqueous batteries due to its unique layered structure,which theoretically allows for efficient ion diffusion.However,current stud...Bismuth oxybromide(BiOBr)is being actively researched as a promising anode material for aqueous batteries due to its unique layered structure,which theoretically allows for efficient ion diffusion.However,current studies have come across many challenges,e.g.serious capacity degradation and inferior rate capability caused by severe structural collapse and sluggish reaction kinetics,highlighting the need for further improvement in efficient utilization of the layered space.Herein,this study employs a novel crystal orientation regulation to enhance the performance of BiOBr electrode by a facile solvothermal method to efficiently utilize the interlayered structu re.The delicate design of BiOBr(BOB)succeeds in maximizing the exposed(110)crystalline plane,providing efficient pathways for ion diffusion and streamlining the mass migration process.Moreover,the optimized band structure and the formation of oxygen vacancies in this designed material have been found,enabling high electrical conductivity,accelerating the charge transfer process and facilitating rapid reaction rate.Owing to the simultaneously enhanced mass transfer at the interlayers and the charge transfer during the phase conversion process,the BOB-110 electrode exhibits exceptional electrochemical performances,boasting impressive charge storage and rate capability(159 mAh g^(-1)at 4 A g^(-1)),and outstanding cycling stability of capacity retention around 75%(119 mAh g^(-1))even after 1000 cycles at a high current density of 4 A g^(-1).These findings underscore the substantial potential of BiOBr electrodes for future energy storage devices such as wearable electronics and power grids where the power output,lifespan,and affordability are simultaneously required.展开更多
Photoelectrochemical water oxidation reaction (PEC-WOR) as a sustainable route to produce H_(2)O_(2) is attractive but limited by low activity and poor product selectivity of photoanodes due to limited photogenerated ...Photoelectrochemical water oxidation reaction (PEC-WOR) as a sustainable route to produce H_(2)O_(2) is attractive but limited by low activity and poor product selectivity of photoanodes due to limited photogenerated charge efficiency and unfavorable thermodynamics. Herein, by crystal orientation engineering, the WO_(3) photoanode exposing (200) facets achieves both superior WOR activity (15.4 mA cm^(−2) at 1.76 VRHE) and high selectivity to H_(2)O_(2) (∼70%). Comprehensive experimental and theoretical investigations discover that the high PEC-WOR activity of WO_(3)-(200) is attributed to the rapid photogenerated charge separation/transfer both in bulk and at interfaces of WO_(3)-(200) facet, which reduces the charge transfer resistance. This, coupling with the unique defective hydrogen bonding network at the WO_(3)-(200)/electrolyte interface evidenced by operando PEC Fourier transform infrared spectroscopy, facilitating the outward-transfer of the WOR-produced H^(+), lowers the overall reaction barrier for the PEC-WOR. The superior selectivity of PEC-WOR to H_(2)O_(2) is ascribed to the unique defective hydrogen bonding network alleviated adsorption of ∗OH over the WO_(3)-(200) facet, which specially lowers the energy barrier of the 2-electron pathway, as compared to the 4-electron pathway. This work addresses the significant role of crystal orientation engineering on photoelectrocatalytic activity and selectivity, and sheds lights on the underlying PEC mechanism by understanding the water adsorption behaviors under illumination. The knowledge gained is expected to be extended to other photoeletrochemical reactions.展开更多
Carbon fiber reinforced polymer(CFRP)composites,as a typical difficult-to-machine material,exhibit high cutting forces and temperatures during actual machining,leading to more severe tool wear compared to traditional ...Carbon fiber reinforced polymer(CFRP)composites,as a typical difficult-to-machine material,exhibit high cutting forces and temperatures during actual machining,leading to more severe tool wear compared to traditional metal ma-terials.The shear fracture during fiber cutting is incomplete,resulting in surface defects such as unclosed fibers and burrs.To analyze the cutting forces and tool wear areas when cutting CFRP with different fiber angles,a three-dimensional or-thogonal cutting model of CFRP was established using finite element software and the VUMAT subroutine,based on the three-dimensional Hashin criterion.Simulation results show that during the cutting process of CFRP,high-stress areas appear in the region where the cutting edge contacts the workpiece for each fiber orientation,primarily concentrated in the first deformation zone in contact with the cutting edge.The Mises stress is highest when cutting the 90°fibers and lowest when cutting the 0°fibers.When cutting the 0°and 135°fibers,the tool is prone to wear on both the rake and flank faces,while when cutting the 45°and 90°fibers,the tool's rake face is more likely to experience wear.展开更多
Li plating behavior of the Li metal anode and its compatibility with electrolytes play a decisive role in the electrochemical performance of the Li metal batteries(LMBs),while the intrinsic highly reactive Li would in...Li plating behavior of the Li metal anode and its compatibility with electrolytes play a decisive role in the electrochemical performance of the Li metal batteries(LMBs),while the intrinsic highly reactive Li would induce serious results especially under deep Li plating/stripping depth and with lean electrolytes.Herein,we propose an innovative strategy to simultaneously regulate the bulk construction and the preferential orientation of Li deposition by introducing Li22Sn5/Li-Mg alloys to realize ultra-stable thin Li anodes with long lifespan.The alloys can form a continuous framework with high lithiophilicity and fast ion-diffusion to enable homogenous Li flux,and meanwhile tune the preferential orientation of Li from the conventional(110)plane to(200)to lower the Li reactivity with electrolytes and optimize Li deposition.Therefore,the thin Li-Sn-Mg alloy anode showcases ultra-stable cycling without volume changes and dendrites under a deep Li plating/stripping depth of 89.1%(5 mAh cm^(-2))for over 1200 h in commercial carbonate electrolytes.Moreover,a multilayered NCM811pouch cell with a high energy density of403.6 Wh kg^(-1)is achieved under the harsh conditions of low N/P ratio(0.769)and lean electrolytes(~2.1 g Ah^(-1)).Synchronously,the thin alloy anode shows improved air stability which benefits the manufacturing process and performance of LMBs,displaying the great application potential of these alloy anodes.展开更多
Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation pr...Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation process under two different orientations of σ_(2),i.e.σ_(2) parallel to the fracture plane(Scheme 2)and σ_(2) cutting through the fracture plane(Scheme 3),under varying σ_(3) from 10 MPa to 40 MPa.The peak or fracture reactivation strength,deformation,failure mode,and post-peak mechanical behavior of intact(Scheme 1)and pre-fractured(Schemes 2 and 3)specimens were also compared.Results show that for intact specimens,the stress remains nearly constant in the residual sliding stage with no stick-slip,and the newly formed fracture surface only propagates along the σ_(2) direction when σ_(3) ranges from 10 MPa to 30 MPa,while it extends along both σ_(2) and σ_(3) directions when σ_(3) increases to 40 MPa;for the pre-fractured specimens,the fractures are usually reactivated under all the σ_(3) levels in Scheme 2,but fracture reactivation only occurs when σ_(3) is greater than 25 MPa in Scheme 3,below which new faulting traversing the original macro fracture occurs.In all the test schemes,both ε_(2) and ε_(3) experience an accumulative process of elongation,after which an abrupt change occurs at the point of the final failure;the degree of this change is dependent on the orientation of the new faulting or the slip direction of the original fracture,and it is generally more than 10 times larger in the slip direction of the original fracture than in the non-slip direction.Besides,the differential stress(peak stress)required for reactivation and the post-peak stress drop increase with increasing σ_(3).Post-peak stress drop and residual strength in Scheme 3 are generally greater than those in Scheme 2 at the same σ_(3) value.Our study clearly shows that intermediate principal stress orientation not only affects the fracture reactivation strength but also influences the slip deformation and failure modes.These new findings facilitate the mitigation of dynamic geological hazards associated with fracture and fault slip.展开更多
Filler-reinforced polymer composites demonstrate pervasive applications due to their strengthened performances,multi-degree tunability,and ease of manufacturing.In thermal management field,polymer composites reinforce...Filler-reinforced polymer composites demonstrate pervasive applications due to their strengthened performances,multi-degree tunability,and ease of manufacturing.In thermal management field,polymer composites reinforced with thermally conductive fillers are widely adopted as thermal interface materials(TIMs).However,the three dimensional(3D)-stacked heterogenous integration of electronic devices has posed the problem that high-density heat sources are spatially distributed in the package.This situation puts forward new requirements for TIMs,where efficient heat dissipation channels must be established according to the specific distribution of discrete heat sources.To address this challenge,a 3D printing-assisted streamline orientation(3D-PSO)method was proposed to fabricate composite thermal materials with 3D programmable microstructures and orientations of fillers,which combines the shape-design capability of 3D printing and oriented control ability of fluid.The mechanism of fluid-based filler orientation control along streamlines was revealed by mechanical analysis of fillers in matrix.Thanks to the designed heat dissipation channels,composites showed better thermal and mechanical properties in comparison to random composites.Specifically,the thermal conductivity of 3D mesh-shape polydimethylsiloxane/liquid metal(PDMS/LM)composite was5.8 times that of random PDMS/LM composite under filler loading of 34.8 vol%.The thermal conductivity enhancement efficiency of 3D mesh-shape PDMS/carbon fibers composite reached101.05%under filler loading of 5.2 vol%.In the heat dissipation application of 3D-stacked chips,the highest chip temperature with 3D-PSO composite was 42.14℃lower than that with random composites.This is mainly attributed to the locally aggregated and oriented fillers'microstructure in fluid channels,which contributes to thermal percolation phenomena.The3D-PSO method exhibits excellent programmable design capabilities to adopt versatile distributions of heat sources,paving a new way to solve the complicated heat dissipation issue in 3D-stacked chips integration application.展开更多
Doped HfO_(2)as an emerging ferroelectric material,holds considerable promise for non-volatile memory applications.Epitaxial growth of doped HfO_(2)thin films is widely adopted as an effective technique for revealing ...Doped HfO_(2)as an emerging ferroelectric material,holds considerable promise for non-volatile memory applications.Epitaxial growth of doped HfO_(2)thin films is widely adopted as an effective technique for revealing the intrinsic ferroelectric properties.In this study,based on systematic structural,chemical and electrical investigations,the influences of Mn doping and substrate orientation on ferroelectric properties of Mn-doped HfO_(2)epitaxial thin films are investigated.The results demonstrate that Mn-doped HfO_(2)thin films with orthorhombic phase can be epitaxially grown along[111]out-of-plane direction on both SrTiO_(3)(001)and(110)substrates,and 10%Mn-doping significantly stabilizes the orthorhombic polar phase and enhances the ferroelectric polarization.Interestingly,compared to the films on SrTiO_(3)(001)substrate,the better crystallinity and reduction of oxygen vacancy amount in Mn-doped HfO_(2)films grown on the SrTiO_(3)(110)substrate are observed,which enhance the remanent polarization and reduce the coercive field.It provides an effective approach for the controllable regulation of defects and the enhancement of intrinsic ferroelectricity in HfO_(2)-based materials.展开更多
Developing high-performance narrow-bandgap (NBG) perovskite solar cells based on tin-lead (Sn-Pb) perovskite is critical for the advancement of all-perovskite tandem solar cells. However, the limitations of the device...Developing high-performance narrow-bandgap (NBG) perovskite solar cells based on tin-lead (Sn-Pb) perovskite is critical for the advancement of all-perovskite tandem solar cells. However, the limitations of the device current density and efficiency are magnified by the issues concerning poor carrier transport caused by a substantial number of defects in thick NBG films. This problem is further exacerbated by the quality of film crystallization, which is associated with the rapid and uncontrolled crystallization of Sn-rich perovskite chemistry using the antisolvent approach. We regulate the crystallization of Sn-contained perovskite with a mild gas-quench approach to fabricate a highly crystal-oriented and well-arranged NBG perovskite absorber. This strategy effectively boosts electron transport and light absorption of the NBG perovskite. Consequently, the average power conversion efficiency (PCE) of the NBG perovskite solar cells increases from 19.50% to 21.18%, with the best device achieving an excellent PCE of 21.84%. Furthermore, when combined with a wide-bandgap perovskite subcell to form an all-perovskite tandem solar cell, a PCE of 25.23% is achieved. After being stored in the glovebox for 1000 h, the unencapsulated device maintains over 90% of its initial PCE, demonstrating long-term stability and durability. This work presents a promising approach for developing high-efficiency NBG perovskite solar cells.展开更多
Optimizing the orientation of β-Ga_(2)O_(3) has emerged as an effective strategy to design high-performance β-Ga_(2)O_(3) device,but the orientation growth mechanism and approach have not been revealed yet.Herein,by...Optimizing the orientation of β-Ga_(2)O_(3) has emerged as an effective strategy to design high-performance β-Ga_(2)O_(3) device,but the orientation growth mechanism and approach have not been revealed yet.Herein,by employing AlN buffer layer,the highly preferred orientation of β-Ga_(2)O_(3)(100)film rather than(-201)film is realized on 4H-SiC substrate at low sputtering power and temperature.Because β-Ga_(2)O_(3)(100)film exhibits a slower growth speed than(-201)film,the former possesses the higher dangling bond density and the lower nucleation energy,and a large conversion barrier exists between these two ori-entations.Moreover,the AlN buffer layer can suppress the surface oxidation of the 4H-SiC substrate and eliminate the strain of β-Ga_(2)O_(3)(100)film,which further reduces the nucleation energy and en-larges the conversion barrier.Meanwhile,the AlN buffer layer can increase the oxygen vacancy formation energy and decrease the oxygen vacancy concentration of β-Ga_(2)O_(3)(100)film.Consequently,the solar-blind photodetector based on the oriented film exhibits the outstanding detectivity of 1.22×10^(12) Jones and photo-to-dark current ratio of 1.11×10^(5),which are the highest among the reported β-Ga_(2)O_(3) solar-blind photodetector on the SiC substrate.Our results offer in-depth insights into the preferred orientation growth mechanism,and provide an effective way to design high-quality β-Ga_(2)O_(3)(100)orientation film and high-performance solar-blind photodetector.展开更多
The orientations of ancient tombs have attracted increasing scholarly attention,as they offer valuable insights into early social structures,cultural traditions,and the relationship between humans and their environmen...The orientations of ancient tombs have attracted increasing scholarly attention,as they offer valuable insights into early social structures,cultural traditions,and the relationship between humans and their environment.However,the application of machine learning algorithms to the study of tomb orientation remains relatively underexplored.In this study,we employed a Gaussian mixture model to conduct a systematic analysis of the spatial and temporal evolution of Neolithic tomb orientations in Central China.We also examined the relationship between tomb orientation and both environmental factors and sociocultural dynamics.The findings suggest a deliberate and methodical approach to the planning and alignment of tombs during the Neolithic Age.Tomb orientations in each chronological phase displayed clear clustering patterns,reflecting a developmental trajectory from uniformity to diversity,and ultimately toward integration.While early angular measurement techniques appear to have emerged,they do not show evidence of sustained technical progression.Instead,different periods seem to have achieved similar levels of directional accuracy.The predominance of westward-facing tombs may be closely tied to both topographic features and the symbolic association with sunset.At the same time,cultural evolution and interregional exchange played essential roles in shaping the distinctive patterns of prehistoric tomb orientation.This research contributes not only to the understanding of ancient funerary practices but also demonstrates the potential of machine learning and artificial intelligence technologies in advancing archaeological analysis.展开更多
基金Natural Science Foundation of Hunan Province,China(No.2024JJ8335)Open Topic of Hunan Geospatial Information Engineering and Technology Research Center,China(No.HNGIET2023004).
文摘The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0710604)NSFC(Grant No.42374064).
文摘Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(FMSs)derived from earthquake data and formation micro-imager(FMI)data from well logs.However,these techniques can be costly,depth-inaccurate,and may lack spatial coverage.To address this issue,we introduce the use of three-dimensional(3D)seismic data(active sources)as a lateral constraint to approximate the 3D stress orientation field.Recognizing that both stress and fracture patterns are closely related to seismic velocity anisotropy,we derive the orientation of azimuthal anisotropy from multi-azimuth 3D seismic data to compensate for the lack of spatial stress orientation information.We apply our proposed workflow to a case study in the Weiyuan area of the Sichuan Basin,China,a region targeted for shale gas production.By integrating diverse datasets,including 3D seismic,earthquakes,and well logs,we develop a comprehensive 3D model of in-situ stress(orientations and magnitudes).Our results demonstrate that the estimated anisotropy orientations from 3D seismic data are consistent with the direction of maximum horizontal principal stress(SHmax)obtained from FMIs.We analyzed 12 earthquakes(magnitude>3)recorded between 2016 and 2020 for their FMSs and compressional axis(P-axis)orientations.The derived SHmax direction from our 3D stress model is 110°ES(East-South),which shows excellent agreement with the FMSs(within 3.96°).This close alignment validates the reliability and precision of our integrated method for predicting 3D SHmax orientations.
基金Supported by Undergraduate Education and Teaching Reform Research Project of Chengdu University(XJJG-20242025228)Sichuan Genuine Medicinal Materials and Traditional Chinese Medicine Innovation Team(SCCXTD-2025-19)Sichuan Science and Technology Program(2021YFYZ0012).
文摘The rapid advancement of the bioeconomy imposes increasingly stringent demands on bioengineering education.Drawing on data from the 2025 Chinese Undergraduate Employment Report and related sources,this study revealed that while employment placement rates for bioengineering graduates remain stable,starting salaries exhibit limited growth and career trajectories lack clarity.These challenges originate from a curriculum lagging behind technological progress,inadequate practical training,and a mismatch between student competencies and industry expectations.To address these issues,this paper proposed a strategic framework grounded in"demand-driven design,industry-education integration,and competence-centered development".Key strategies include dynamic curriculum renewal,collaborative university-industry training,holistic competency development,and personalized student support,which collectively aim at enhancing graduates employment competitiveness and long-term professional sustainability.
基金supported by the National Key R&D Program of China(No.2022YFB3504403).
文摘The origin of the misorientations after fcc(face-centered cubic)to hcp(hexagonal close-packed)transformation in pure cobalt was elucidated by utilizing the electron backscatter diffraction(EBSD)technique and transformation crystallographic models.It is found the Shoji−Nishiyama orientation relationship during fcc→hcp transformation leads to four hcp variants,characterized by a common misorientation angle of 70.5°with respect to the<1120>direction,which is the predominant misorientation observed.Other statistically significant misorientation angles between hcp grains,including 32°,36°,38°,60°,71°and 86°−91°,are also identified.These newly observed misorientation angles are linked to the microstructure of the fcc matrix at elevated temperatures,with twin structures in the fcc matrix being the primary cause.Furthermore,a novel method is proposed for estimating the fraction of twins in the fcc grains based on misorientation angles between hcp variants,which is found to be consistent with experimental observations.In-situ EBSD observations validate the possible origin of fcc twins from the hcp→fcc transformation.
基金co-supported by National Key R&D Program of China(No.2022YFB4602003)Key Project of National Natural Science Foundation of China(No.12032018)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110489)National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research(No.52375380)National Key Research and Development Program of China(No.2022YFB3402200)。
文摘A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and structural yield strength can be simultaneously adjusted by integrating the overall process-structure-performance relationship of the AM process into the optimization.Specifically,the transverse isotropic material model is adopted to describe the material properties induced by the layer-by-layer manner of additive manufacturing.To bolster lattice strength performance,the stress constraints and ratio constraints of lattice struts are employed.The Tsai-Wu yield criterion is implemented to characterize the lattice strut's strength,while the P-norm method streamlines the handling of multiple constraints,minimizing computational overhead.Moreover,the gradient-based optimization model is established,where both the individual struts diameters and BO can be designed,and the buckling-prone spatial struts are strategically eliminated to improve the lattice strength further.Furthermore,several typical structures are optimized to verify the effectiveness of the proposed method.The optimized results are quite encouraging since the heterogeneous lattice structures with optimized BO obtained by the strength-based concurrent method show a remarkably improved performance compared to traditional designs.
文摘In the wave of internet culture,short videos have become an indispensable medium for social communication.The metaphorical hot words contained within them serve as a unique linguistic phenomenon that leads topics and focuses attention,greatly enriching the expressive layers and rhetorical charm of short videos,and significantly enhancing the video’s theme orientation and emotional identification.This research aims to explore the relationship between the use of metaphorical Internet buzzwords in short videos and the thematic and emotional orientation.The study adopts a combination of qualitative and quantitative methods,taking 10 videos with over 10,000 likes posted by a well-known blogger on Xiaohongshu in 2024 as the research object,transcribing the text,forming research corpora,and conducting multi-dimensional cognitive analysis on them.The study shows that about half of short videos contain metaphorical hot words.Different types of metaphorical hot words can trigger different emotional reactions from fans,especially humorous metaphorical hot words that can stimulate fans’emotional identification and resonance.In addition,in terms of fan participation,videos using metaphorical hot words tend to attract more fan attention than those that do not:these videos not only attract more fans to watch and like,but also trigger more comments and sharing behaviors.In summary,short videos cleverly use metaphors to create internet hot words,significantly enhancing the video’s thematic guidance and emotional resonance,manifested in creating popular topics,clarifying guiding themes,enhancing content attractiveness,and stimulating strong emotional identification,thereby promoting interactive behaviors such as likes and shares.These findings provide a reference for research in related fields such as metaphor,communication studies,and sociology.
基金supported by the National Natural Science Foundation of China(Nos.51971009,12002013,51831006)the Natural Science Foundation of Zhejiang Province,China(No.LZ23E010004).
文摘The angular deviations and influential factors of Burgers orientation relationship(BOR)in Ti-6Al-4V and Ti-6.5Al-2Zr-1Mo-1V alloys were investigated by optical microscope(OM),scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and high-angle annular dark-field scanning transmission electron microscope(HAADF-STEM).A spherical center angle model was introduced to calculate the angular deviations from the ideal BOR between α and β phases.The results indicate thatαand β phases in α colonies of both alloys do not follow the perfect BOR during β→α phase transformation,with angular deviation values less than 3°.Through detailed microstructure characterization,the broad face of α/β interfaces viewed along two different electron incident directions shows the atomic-scale terrace-ledge structure,and many dislocations are observed within α and β phases and near α/β interfaces.Further studies reveal that the angular deviations mainly originate from lattice distortions caused by dislocations in α and β phases and lattice mismatches at α/β interfaces.
文摘The prediction of the fracture plane orientation in fatigue is a scientific topic and remains relevant for every type of material. However, in this work, we compared the orientation of the fracture plane obtained experimentally through tests on specimens under multiaxial loading with that calculated by the variance method. In the statistical approach criteria, several methods have been developed but we have presented only one method, namely the variance method using the equivalent stress. She assumes that the fracture plane orientation is the one on which the variance of the equivalent stress is maximum. Three types of equivalent stress are defined for this method [1]: normal stress, shear stress and combined normal and shear stress. The results obtained were compared with experimental results for multiaxial cyclic stress states, and it emerges that the variance method for the case of combined loading is conservative as it gives a better prediction of the fracture plane.
基金supported by the National Natural Science Foundation of China(No.22268025)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011985)the Applied Basic Research Program of Yunnan Province(Nos.202201AT070115,202201BE070001–031).
文摘The miniaturization and high-power density of electronic devices presents new challenges in thermal management.The precise control of microstructure arrangement,particularly in boron nitride nanosheets(BNNS),is essential for achieving efficient heat dissipation in highly thermally conductive composites within electrically insulating package.In this work,manganese ferrite was hydrothermally synthesized on BNNS,creating a layered structure in a magnetically responsive nanohybrid material named BNNS@M.This material was then integrated into a waterborne polyurethane(WPU)solution and shaped under a magnetic field to produce thermally conductive film.By altering the magnetic field direction,the mi-crostructure orientation of BNNS@M was controlled,resulting in anisotropic thermally conductive com-posite films with horizontal and vertical orientations.Specifically,under a vertical magnetic field,the film 30-Ve-BNNS@WPU,containing 30 wt.%BNNS@M,achieved a through-plane thermal conductivity of 8.5 W m^(−1)K^(−1)and an in-plane thermal conductivity of 1.8 W m^(−1)K^(−1),showcasing significant anisotropic thermal conductivity.Meanwhile,these films demonstrated excellent thermal stability,mechanical per-formance,and flame retardancy.Furthermore,employing Foygel’s theory elucidated the impact of filler arrangement on thermal conductivity mechanisms and the actual application of 5 G device chips and LED lamps emphasizing the potential of these thermally conductive films in thermal management appli-cations.This investigation contributes valuable design concepts and foundations for the development of anisotropic thermally conductive composites suitable for electron thermal management.
基金Project(2018XK2301) supported by the Change-Zhu-Tan National Independent Innavation Demonstration Zone Special Program,China。
文摘The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.
基金supported by the CRF grant of the Hong Kong Research Grant Council(C5031-20G)the Guang Dong Basic and Applied Basic Research Foundation(2024A1515013283)the Seed Fund of University Research Committee(2201100760)。
文摘Bismuth oxybromide(BiOBr)is being actively researched as a promising anode material for aqueous batteries due to its unique layered structure,which theoretically allows for efficient ion diffusion.However,current studies have come across many challenges,e.g.serious capacity degradation and inferior rate capability caused by severe structural collapse and sluggish reaction kinetics,highlighting the need for further improvement in efficient utilization of the layered space.Herein,this study employs a novel crystal orientation regulation to enhance the performance of BiOBr electrode by a facile solvothermal method to efficiently utilize the interlayered structu re.The delicate design of BiOBr(BOB)succeeds in maximizing the exposed(110)crystalline plane,providing efficient pathways for ion diffusion and streamlining the mass migration process.Moreover,the optimized band structure and the formation of oxygen vacancies in this designed material have been found,enabling high electrical conductivity,accelerating the charge transfer process and facilitating rapid reaction rate.Owing to the simultaneously enhanced mass transfer at the interlayers and the charge transfer during the phase conversion process,the BOB-110 electrode exhibits exceptional electrochemical performances,boasting impressive charge storage and rate capability(159 mAh g^(-1)at 4 A g^(-1)),and outstanding cycling stability of capacity retention around 75%(119 mAh g^(-1))even after 1000 cycles at a high current density of 4 A g^(-1).These findings underscore the substantial potential of BiOBr electrodes for future energy storage devices such as wearable electronics and power grids where the power output,lifespan,and affordability are simultaneously required.
基金supported by the National Natural Science Foundation of China(22478211,22179067)the Major Fundamental Research Program of Natural Science Foundation of Shandong Province(ZR2022ZD10).
文摘Photoelectrochemical water oxidation reaction (PEC-WOR) as a sustainable route to produce H_(2)O_(2) is attractive but limited by low activity and poor product selectivity of photoanodes due to limited photogenerated charge efficiency and unfavorable thermodynamics. Herein, by crystal orientation engineering, the WO_(3) photoanode exposing (200) facets achieves both superior WOR activity (15.4 mA cm^(−2) at 1.76 VRHE) and high selectivity to H_(2)O_(2) (∼70%). Comprehensive experimental and theoretical investigations discover that the high PEC-WOR activity of WO_(3)-(200) is attributed to the rapid photogenerated charge separation/transfer both in bulk and at interfaces of WO_(3)-(200) facet, which reduces the charge transfer resistance. This, coupling with the unique defective hydrogen bonding network at the WO_(3)-(200)/electrolyte interface evidenced by operando PEC Fourier transform infrared spectroscopy, facilitating the outward-transfer of the WOR-produced H^(+), lowers the overall reaction barrier for the PEC-WOR. The superior selectivity of PEC-WOR to H_(2)O_(2) is ascribed to the unique defective hydrogen bonding network alleviated adsorption of ∗OH over the WO_(3)-(200) facet, which specially lowers the energy barrier of the 2-electron pathway, as compared to the 4-electron pathway. This work addresses the significant role of crystal orientation engineering on photoelectrocatalytic activity and selectivity, and sheds lights on the underlying PEC mechanism by understanding the water adsorption behaviors under illumination. The knowledge gained is expected to be extended to other photoeletrochemical reactions.
文摘Carbon fiber reinforced polymer(CFRP)composites,as a typical difficult-to-machine material,exhibit high cutting forces and temperatures during actual machining,leading to more severe tool wear compared to traditional metal ma-terials.The shear fracture during fiber cutting is incomplete,resulting in surface defects such as unclosed fibers and burrs.To analyze the cutting forces and tool wear areas when cutting CFRP with different fiber angles,a three-dimensional or-thogonal cutting model of CFRP was established using finite element software and the VUMAT subroutine,based on the three-dimensional Hashin criterion.Simulation results show that during the cutting process of CFRP,high-stress areas appear in the region where the cutting edge contacts the workpiece for each fiber orientation,primarily concentrated in the first deformation zone in contact with the cutting edge.The Mises stress is highest when cutting the 90°fibers and lowest when cutting the 0°fibers.When cutting the 0°and 135°fibers,the tool is prone to wear on both the rake and flank faces,while when cutting the 45°and 90°fibers,the tool's rake face is more likely to experience wear.
基金supported by the Jilin Province Science and Technology Department Major Science and Technology project[grant numbers 20220301004GX,20220301005GX]Key Subject Construction of Physical Chemistry of Northeast Normal Universitythe Fundamental Research Funds for the Central Universities[grant number 2412023QD014]。
文摘Li plating behavior of the Li metal anode and its compatibility with electrolytes play a decisive role in the electrochemical performance of the Li metal batteries(LMBs),while the intrinsic highly reactive Li would induce serious results especially under deep Li plating/stripping depth and with lean electrolytes.Herein,we propose an innovative strategy to simultaneously regulate the bulk construction and the preferential orientation of Li deposition by introducing Li22Sn5/Li-Mg alloys to realize ultra-stable thin Li anodes with long lifespan.The alloys can form a continuous framework with high lithiophilicity and fast ion-diffusion to enable homogenous Li flux,and meanwhile tune the preferential orientation of Li from the conventional(110)plane to(200)to lower the Li reactivity with electrolytes and optimize Li deposition.Therefore,the thin Li-Sn-Mg alloy anode showcases ultra-stable cycling without volume changes and dendrites under a deep Li plating/stripping depth of 89.1%(5 mAh cm^(-2))for over 1200 h in commercial carbonate electrolytes.Moreover,a multilayered NCM811pouch cell with a high energy density of403.6 Wh kg^(-1)is achieved under the harsh conditions of low N/P ratio(0.769)and lean electrolytes(~2.1 g Ah^(-1)).Synchronously,the thin alloy anode shows improved air stability which benefits the manufacturing process and performance of LMBs,displaying the great application potential of these alloy anodes.
基金funding support from the National Nature Science Foundation of China(Grant No.42272334)the National Key Research and Development Program of China(Grant No.2022YFE0137200)the Taishan Scholars Program(Grant No.2019RKB01083).
文摘Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation process under two different orientations of σ_(2),i.e.σ_(2) parallel to the fracture plane(Scheme 2)and σ_(2) cutting through the fracture plane(Scheme 3),under varying σ_(3) from 10 MPa to 40 MPa.The peak or fracture reactivation strength,deformation,failure mode,and post-peak mechanical behavior of intact(Scheme 1)and pre-fractured(Schemes 2 and 3)specimens were also compared.Results show that for intact specimens,the stress remains nearly constant in the residual sliding stage with no stick-slip,and the newly formed fracture surface only propagates along the σ_(2) direction when σ_(3) ranges from 10 MPa to 30 MPa,while it extends along both σ_(2) and σ_(3) directions when σ_(3) increases to 40 MPa;for the pre-fractured specimens,the fractures are usually reactivated under all the σ_(3) levels in Scheme 2,but fracture reactivation only occurs when σ_(3) is greater than 25 MPa in Scheme 3,below which new faulting traversing the original macro fracture occurs.In all the test schemes,both ε_(2) and ε_(3) experience an accumulative process of elongation,after which an abrupt change occurs at the point of the final failure;the degree of this change is dependent on the orientation of the new faulting or the slip direction of the original fracture,and it is generally more than 10 times larger in the slip direction of the original fracture than in the non-slip direction.Besides,the differential stress(peak stress)required for reactivation and the post-peak stress drop increase with increasing σ_(3).Post-peak stress drop and residual strength in Scheme 3 are generally greater than those in Scheme 2 at the same σ_(3) value.Our study clearly shows that intermediate principal stress orientation not only affects the fracture reactivation strength but also influences the slip deformation and failure modes.These new findings facilitate the mitigation of dynamic geological hazards associated with fracture and fault slip.
基金supported by the National Natural Science Foundation of China(Grant No.52106089)the National Key R&D Project from Ministry of Science and Technology of China(Grant No.2022YFA1203100)。
文摘Filler-reinforced polymer composites demonstrate pervasive applications due to their strengthened performances,multi-degree tunability,and ease of manufacturing.In thermal management field,polymer composites reinforced with thermally conductive fillers are widely adopted as thermal interface materials(TIMs).However,the three dimensional(3D)-stacked heterogenous integration of electronic devices has posed the problem that high-density heat sources are spatially distributed in the package.This situation puts forward new requirements for TIMs,where efficient heat dissipation channels must be established according to the specific distribution of discrete heat sources.To address this challenge,a 3D printing-assisted streamline orientation(3D-PSO)method was proposed to fabricate composite thermal materials with 3D programmable microstructures and orientations of fillers,which combines the shape-design capability of 3D printing and oriented control ability of fluid.The mechanism of fluid-based filler orientation control along streamlines was revealed by mechanical analysis of fillers in matrix.Thanks to the designed heat dissipation channels,composites showed better thermal and mechanical properties in comparison to random composites.Specifically,the thermal conductivity of 3D mesh-shape polydimethylsiloxane/liquid metal(PDMS/LM)composite was5.8 times that of random PDMS/LM composite under filler loading of 34.8 vol%.The thermal conductivity enhancement efficiency of 3D mesh-shape PDMS/carbon fibers composite reached101.05%under filler loading of 5.2 vol%.In the heat dissipation application of 3D-stacked chips,the highest chip temperature with 3D-PSO composite was 42.14℃lower than that with random composites.This is mainly attributed to the locally aggregated and oriented fillers'microstructure in fluid channels,which contributes to thermal percolation phenomena.The3D-PSO method exhibits excellent programmable design capabilities to adopt versatile distributions of heat sources,paving a new way to solve the complicated heat dissipation issue in 3D-stacked chips integration application.
基金supported by the National Natural Science Foundation of China(Grant Nos.52125204,52250281,52422209,92163210,and U21A2066)the Na-tional Key Research and Development Program of China(Grant Nos.2024YFA1208601,2022YFB3807602,and 2022YFB3807604).
文摘Doped HfO_(2)as an emerging ferroelectric material,holds considerable promise for non-volatile memory applications.Epitaxial growth of doped HfO_(2)thin films is widely adopted as an effective technique for revealing the intrinsic ferroelectric properties.In this study,based on systematic structural,chemical and electrical investigations,the influences of Mn doping and substrate orientation on ferroelectric properties of Mn-doped HfO_(2)epitaxial thin films are investigated.The results demonstrate that Mn-doped HfO_(2)thin films with orthorhombic phase can be epitaxially grown along[111]out-of-plane direction on both SrTiO_(3)(001)and(110)substrates,and 10%Mn-doping significantly stabilizes the orthorhombic polar phase and enhances the ferroelectric polarization.Interestingly,compared to the films on SrTiO_(3)(001)substrate,the better crystallinity and reduction of oxygen vacancy amount in Mn-doped HfO_(2)films grown on the SrTiO_(3)(110)substrate are observed,which enhance the remanent polarization and reduce the coercive field.It provides an effective approach for the controllable regulation of defects and the enhancement of intrinsic ferroelectricity in HfO_(2)-based materials.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFB1506400)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)+3 种基金the CAS Project for Young Scientists in Basic Research(YSBR-090)the National Natural Science Foundation of China(Contract Nos.U20A20206,51972300,62274155,and 62304219)support from the Youth Innovation Promotion Association,the Chi-nese Academy of Sciences(No.2020114)Beijing Natural Sci-ence Foundation(Grant No.JQ24029).
文摘Developing high-performance narrow-bandgap (NBG) perovskite solar cells based on tin-lead (Sn-Pb) perovskite is critical for the advancement of all-perovskite tandem solar cells. However, the limitations of the device current density and efficiency are magnified by the issues concerning poor carrier transport caused by a substantial number of defects in thick NBG films. This problem is further exacerbated by the quality of film crystallization, which is associated with the rapid and uncontrolled crystallization of Sn-rich perovskite chemistry using the antisolvent approach. We regulate the crystallization of Sn-contained perovskite with a mild gas-quench approach to fabricate a highly crystal-oriented and well-arranged NBG perovskite absorber. This strategy effectively boosts electron transport and light absorption of the NBG perovskite. Consequently, the average power conversion efficiency (PCE) of the NBG perovskite solar cells increases from 19.50% to 21.18%, with the best device achieving an excellent PCE of 21.84%. Furthermore, when combined with a wide-bandgap perovskite subcell to form an all-perovskite tandem solar cell, a PCE of 25.23% is achieved. After being stored in the glovebox for 1000 h, the unencapsulated device maintains over 90% of its initial PCE, demonstrating long-term stability and durability. This work presents a promising approach for developing high-efficiency NBG perovskite solar cells.
基金supported by the National Key Research and Development Program of China(No.2021YFA0715600)the National Natural Science Foundation of China(Nos.62274125,52192611)+2 种基金the Guangdong Basic and Applied Basic Research Fund(No.2023A1515030084)the Key Research and Development Program of Shaanxi Province(Grant No.2024GX-YBXM-410)the fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202220).
文摘Optimizing the orientation of β-Ga_(2)O_(3) has emerged as an effective strategy to design high-performance β-Ga_(2)O_(3) device,but the orientation growth mechanism and approach have not been revealed yet.Herein,by employing AlN buffer layer,the highly preferred orientation of β-Ga_(2)O_(3)(100)film rather than(-201)film is realized on 4H-SiC substrate at low sputtering power and temperature.Because β-Ga_(2)O_(3)(100)film exhibits a slower growth speed than(-201)film,the former possesses the higher dangling bond density and the lower nucleation energy,and a large conversion barrier exists between these two ori-entations.Moreover,the AlN buffer layer can suppress the surface oxidation of the 4H-SiC substrate and eliminate the strain of β-Ga_(2)O_(3)(100)film,which further reduces the nucleation energy and en-larges the conversion barrier.Meanwhile,the AlN buffer layer can increase the oxygen vacancy formation energy and decrease the oxygen vacancy concentration of β-Ga_(2)O_(3)(100)film.Consequently,the solar-blind photodetector based on the oriented film exhibits the outstanding detectivity of 1.22×10^(12) Jones and photo-to-dark current ratio of 1.11×10^(5),which are the highest among the reported β-Ga_(2)O_(3) solar-blind photodetector on the SiC substrate.Our results offer in-depth insights into the preferred orientation growth mechanism,and provide an effective way to design high-quality β-Ga_(2)O_(3)(100)orientation film and high-performance solar-blind photodetector.
基金The Basic Scientific Research of Henan Academy of Sciences,No.20250601010National Natural Science Foundation of China,No.41971016+2 种基金The Innovation Team Project of Henan Academy of Sciences,No.20230103Science and Technology Innovation Platform Cultivation and Promotion Project of Henan Academy of Sciences,No.241001037The Soft Science Project of Henan Province,No.252400410524。
文摘The orientations of ancient tombs have attracted increasing scholarly attention,as they offer valuable insights into early social structures,cultural traditions,and the relationship between humans and their environment.However,the application of machine learning algorithms to the study of tomb orientation remains relatively underexplored.In this study,we employed a Gaussian mixture model to conduct a systematic analysis of the spatial and temporal evolution of Neolithic tomb orientations in Central China.We also examined the relationship between tomb orientation and both environmental factors and sociocultural dynamics.The findings suggest a deliberate and methodical approach to the planning and alignment of tombs during the Neolithic Age.Tomb orientations in each chronological phase displayed clear clustering patterns,reflecting a developmental trajectory from uniformity to diversity,and ultimately toward integration.While early angular measurement techniques appear to have emerged,they do not show evidence of sustained technical progression.Instead,different periods seem to have achieved similar levels of directional accuracy.The predominance of westward-facing tombs may be closely tied to both topographic features and the symbolic association with sunset.At the same time,cultural evolution and interregional exchange played essential roles in shaping the distinctive patterns of prehistoric tomb orientation.This research contributes not only to the understanding of ancient funerary practices but also demonstrates the potential of machine learning and artificial intelligence technologies in advancing archaeological analysis.