Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol...Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.展开更多
Microplastic contamination has emerged as a threat in transplantation,with evidence of its presence in human tissues and potential to compromise grafts.Transplant recipients,vulnerable due to immunosuppression and sur...Microplastic contamination has emerged as a threat in transplantation,with evidence of its presence in human tissues and potential to compromise grafts.Transplant recipients,vulnerable due to immunosuppression and surgical exposure,face risk from microplastics via airborne particles,surgical materials,and organ preservation systems.These particles trigger inflammation,oxidative stress,and immune dysregulation—pathways critical in rejection.Microplastics support biofilm formation,potentially facilitating antimicrobial resistance in clinical settings.Despite this risk,transplant-specific research is lacking.We urge action through environmental controls,material substitutions,and procedural modifications,alongside research targeting exposure pathways,biological impact,and mitigation strategies.Transplantation has historically led medical innovation and must do so in confronting this environmental challenge.Leadership from global transplant societies is essential to protect recipients and ensure safe procedures.展开更多
Organic photovoltaics(OPVs)have achieved remarkable progress,with laboratory-scale single-junction devices now demonstrating power conversion efficiencies(PCEs)exceeding 20%.However,these efficiencies are highly depen...Organic photovoltaics(OPVs)have achieved remarkable progress,with laboratory-scale single-junction devices now demonstrating power conversion efficiencies(PCEs)exceeding 20%.However,these efficiencies are highly dependent on the thickness of the photoactive layer,which is typically around 100 nm.This sensitivity poses a challenge for industrial-scale fabrication.Achieving high PCEs in thick-film OPVs is therefore essential.This review systematically examines recent advancements in thick-film OPVs,focusing on the fundamental mechanisms that lead to efficiency loss and strategies to enhance performance.We provide a comprehensive analysis spanning the complete photovoltaic process chain:from initial exciton generation and diffusion dynamics,through dissociation mechanisms,to subsequent charge-carrier transport,balance optimization,and final collection efficiency.Particular emphasis is placed on cutting-edge solutions in molecular engineering and device architecture optimization.By synthesizing these interdisciplinary approaches and investigating the potential contributions in stability,cost,and machine learning aspects,this work establishes comprehensive guidelines for designing high-performance OPVs devices with minimal thickness dependence,ultimately aiming to bridge the gap between laboratory achievements and industrial manufacturing requirements.展开更多
Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosupp...Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.展开更多
Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.Th...Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.The published version showed“Hongzhen Chen”,whereas the correct spelling should be“Hongzheng Chen”.The correct author name has been provided in this Correction,and the original article[1]has been corrected.展开更多
Kidney transplantation(KT)accounts for nearly three-fourths of organ transplants in India,with living donors contributing to 82%of cases.Induction immunosuppression is essential to optimize initial immunosuppression,r...Kidney transplantation(KT)accounts for nearly three-fourths of organ transplants in India,with living donors contributing to 82%of cases.Induction immunosuppression is essential to optimize initial immunosuppression,reduce acute rejections,and enable tailored use of maintenance agents.Rabbit anti-thymocyte globulin(rATG)and interleukin-2 receptor anatagonists(IL-2RA/IL-2RBs)are the most widely used induction therapies.However,data on induction practices across India are limited.To evaluate induction immunosuppression practices across KT centers in India and establish a consensus for different subsets of KT recipients.A nationwide online survey was conducted by the Indian Society of Organ Transplantation(ISOT)among its members(400 KT centers).Responses were analyzed to assess induction practices across diverse donor types,age groups,and immunological risk profiles.Heterogeneity in practices prompted consensus building using a modified Delphi process.Literature review and expert panel discussions(April 2024)were followed by structured voting,and 16 consensus statements were finalized.Of 400 centers approached,254 participated.rATG was the most commonly used induction therapy,followed by IL-2RBs;alemtuzumab was least used.Significant heterogeneity was observed in type,dose,and duration of induction therapy.Consensus recommendations were framed:rATG for high immunological risk recipients and deceased donor KTs;IL-2RB or low-dose rATG for low immunological risk;rituximab in ABOincompatible KTs;and tailoring based on age,diabetes,donor type,infection risk,and affordability.This first ISOT consensus provides 16 India-specific statements on induction therapy in KT.It emphasizes risk-stratified,evidenceinformed,and context-appropriate induction strategies,supporting standardization of care across the country.展开更多
Poly(vinylidene-trifluoroethylene) [P(VDF-TrFE)] copolymer films generally demonstrate limited compatibility with organic semiconductors. The material is frequently compromised by exposure to organic semiconductor sol...Poly(vinylidene-trifluoroethylene) [P(VDF-TrFE)] copolymer films generally demonstrate limited compatibility with organic semiconductors. The material is frequently compromised by exposure to organic semiconductor solutions and other fabrication processes utilized in the production of organic ferroelectric transistors. In this study, an organic ferroelectric field effect transistor(OFeFET) with the 6,13-Bis(triisopropylsilylethynyl) pentacene(TIPS-pentacene) channel is fabricated, in which the aluminum oxide(Al_(2)O_(3)) interlayer is used to improve compatibility. The device displays polymorphic memory and synaptic plasticity of long-term potentiation and depression. Furthermore, an artificial neural network constructed using our devices is simulated to succeed in recognizing the MNIST handwritten digit database with a high accuracy of 92.8%. This research offers a viable approach to enhance the compatibility of the organic ferroelectric polymer P(VDF-TrFE) with organic semiconductors.展开更多
Although national transplant organizations share common visions and goals,the creation of a unified global organization remains impractical.Differences in ethnicity,culture,religion,and education shape local practices...Although national transplant organizations share common visions and goals,the creation of a unified global organization remains impractical.Differences in ethnicity,culture,religion,and education shape local practices and infrastructure,making the establishment of a single global entity unfeasible.Even with these social disparities aside,logistical factors such as time and distance between organ procurement and transplantation sites pose significant challenges.While technological advancements have extended organ preservation times,they have yet to support the demands of transcontinental transplantations effectively.This review presents a comparative analysis of the structures,operational frameworks,policies,and legislation governing various transplant organizations around the world.Key differences pertain to the administration of these organizations,trends in organ donation,and organ allocation policies,which reflect the financial,cultural,and religious diversity across different regions.While a global transplant organization may be out of reach,agreeing on best practices for the benefit of patients is essential.展开更多
Lower Paleozoic black shales are important source rocks worldwide.The Upper Ordovician-Lower Silurian Renheqiao Formation of the Baoshan Block is a low-maturity equivalent of the Wufeng-Longmaxi(WF-LMX)Shale of the Si...Lower Paleozoic black shales are important source rocks worldwide.The Upper Ordovician-Lower Silurian Renheqiao Formation of the Baoshan Block is a low-maturity equivalent of the Wufeng-Longmaxi(WF-LMX)Shale of the Sichuan Basin.However,organic matter(OM)characteristics in these low-maturity Lower Paleozoic shales are not well understood.In this study,50 Renheqiao Formation shale samples collected from seven outcrop sections and one drill core were investigated with organic petrology,organic geochemistry,R_(o)ck-Eval pyrolysis,N_(2) and CO_(2) adsorption,and scanning electron microscope(SEM)analyses to study the OM content,type,thermal maturity,and the development of OM-hosted pores in these Lower Paleozoic shales.The total organic carbon(TOC)content of the Renheqiao Formation shales varies,with the maximum content of 10.07 wt%.R_(o)ck-Eval pyrolysis results show that present OM in the Renheqiao Formation shales is Type IV kerogen,a result of advanced thermal maturation.Graptolite reflectance(GR_(o))ranges from 1.26%to 1.85%,and equivalent vitrinite reflectance(EqR_(o))converted from GR_(o) ranges from 1.08%to 1.51%,indicating that the studied Renheqiao Formation shales are dominantly within the late-mature stage.EqR_(o) based on R_(o)ck-Eval T_(max) shows large variations,which indicates that R_(o)ck-Eval T_(max) is not a reliable thermal maturity indicator for the Lower Paleozoic Renheqiao Formation shales.Caution should be applied when assessing the thermal maturity of high-maturity black shales based on T_(max) when the S2 values are too low.Organic petrographic observations show that OM in these shales is dominated by solid bitumen(>70 vol%of total OM),with minor contributions by graptolites and chitinozoans.The specific surface area and pore volume of shales are controlled by TOC content.Organic pores are hosted by solid bitumen and were not observed in graptolites when examined under the SEM.Although the Renheqiao Formation has a lower thermal maturity than the over-mature WF-LMX Shale,it is mature enough that primary oil-prone macerals have been thermally transformed and could not be identified under the microscope.展开更多
Covalent organic frameworks(COFs)are two-(2D)or threedimensional(3D)crystalline,porous networks generated by reversible polymerization of organic building blocks[1,2].The structures and functionalities of COFs are pre...Covalent organic frameworks(COFs)are two-(2D)or threedimensional(3D)crystalline,porous networks generated by reversible polymerization of organic building blocks[1,2].The structures and functionalities of COFs are precisely controlled via appropriately selected organic building blocks.This design imparts unique properties to COFs,including exceptional structural stability,tunable pore structure,and surface chemical activity,making them promising for gas separation,catalysis,optoelectronics,and sensing applications.Since Yaghi et al.'s seminal report on COFs in 2005[2],these frameworks have swiftly emerged as a hotspot in the field of materials.Originally,the focus was on fabricating rigid frameworks with static structures and optoelectronic properties.However,the inherently static nature of these frameworks hinders their responsiveness to external stimuli,potentially constraining their functionality in specific applications.Hence,an increasing number of researchers are now directing their attention toward the development of dynamic COFs capable of modifying their structures in response to external stimuli[3].Specifically,dynamic 2D COFs exhibiting enhanced structural responsiveness are of particular interest due to their capability to integrate switchable geometries and porosities with semiconductor building blocks,as well as electron conjugation across COF layers and π-stacked columns,which may enable stimuli-responsive electronic and spin properties[4].展开更多
Exploring secondary organic aerosol(SOA)processes is crucial for understanding climate and air pollution in megacities.This study introduces a new method using positive matrix factorization(PMF)to investigate the SOA ...Exploring secondary organic aerosol(SOA)processes is crucial for understanding climate and air pollution in megacities.This study introduces a new method using positive matrix factorization(PMF)to investigate the SOA process by integrating the OA and associated ions previously misidentified as inorganic aerosol in high-resolution aerosol mass spectrometry data.The mass spectra and time series of primary OA(POA)and less oxidized oxygenated OA(OOA)identified by this new method resembled those resolved by traditional PMF.However,more oxidized OOA(MO-OOA)identified by traditional PMF can be further subdivided into multiple OA factors,including nitrogen-enriched OA(ON-OA)and sulfur-enriched OA(OS-OA)in summer,and ON-OA,OS-OA,and OOA in winter.Our findings highlight the significant role of photochemical processes in the formation of OS-OA compared to ON-OA.The compositions of reconstructed MO-OOA varied under different Ox(=O_(3)+NO_(2))and relative humidity conditions,emphasizing the limitations of using a constant mass spectrum.Aged biomass burning OA(BBOA)and coal combustion OA(CCOA),previously misattributed as POA,contributed 9.2%(0.43μg m^(−3))and 7.0%(0.33μg m^(−3))to SOA,respectively.Aged BBOA was more prone to forming OS-OA,whereas ON-OA showed higher correlations with aged CCOA,indicating distinct molecular compositions of SOA from different aged POA sources.Compared to aged BBOA,aged CCOA was more subject to conversion during aqueous phase processing.These results suggest that the variations in mass spectra and compositions need to be considered when simulating SOA processes.展开更多
As a class of crystalline porous materials,metal-organic frameworks(MOFs)have shown unique advantages in the fields of catalysis,gas storage and separation,but their inherent microporous structure(pore diameter<2 n...As a class of crystalline porous materials,metal-organic frameworks(MOFs)have shown unique advantages in the fields of catalysis,gas storage and separation,but their inherent microporous structure(pore diameter<2 nm)severely limits their application in scenarios such as macromolecular mass transfer and so on.In order to overcome this re-striction,mesoporous MOFs(meso-MOFs)with a larger aperture(2-50 nm)have attracted much attention due to their potential applications in biological macromolecular catalysis,energy storage and other fields.To date,how to accurately regulate its mesopore topology and pore ordering still faces important technical challenges.展开更多
Bioengineered organs have been seen as a promising strategy to address the shortage of transplantable organs.However,it is still difficult to achieve heterogeneous structures and complex functions similar to natural o...Bioengineered organs have been seen as a promising strategy to address the shortage of transplantable organs.However,it is still difficult to achieve heterogeneous structures and complex functions similar to natural organs using current bioengineering techniques.This work introduces the methods and dilemmas in organ engineering and existing challenges.Furthermore,a new roadmap for organ engineering,which uses a modular strategy with autologous bioreactors to create organ-level bioengineered constructions,is summarized based on the latest research advances.In brief,different functional modules of natural organs are constructed in vitro,and autologous bioreactors in vivo are utilized to facilitate inter-module assembly to form a complete bioengineered organ capable of replacing natural organ functions.There are bioengineered organs,such as biomimetic tracheas,which have been successfully fabricated following this roadmap.This new roadmap for organ engineering shows prospects in addressing the shortage of transplantable organs and has broad prospects for clinical applications.展开更多
Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic propertie...Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic properties and well-defined topological structure.However,the majority of MOFs are intrinsically dielectric or insulative[1]and typically form as 3D bulk or powder crystals,making them incompatible with complementary metal-oxide semiconductor(CMOS)techniques.In recent years,layer-stacked two-dimensional conjugated MOFs(2D c-MOFs),composed of planar conjugated ligands and linkages[2],have demonstrated high in-plane π conjugation and weak out-of-plane van der Waals interactions,due to their long-range electron delocalization over metal ions and ligands[3].As a result,highly tunable band gaps from semiconductor to conductor,modulable porosity from micropore to macropore and versatile processability into conductive 2D thin films with controllable lateral thickness and domain size are presented,rendering charming potential for applications in(opto-)electronics compared with classic 2D metal oxide,chalcogenide and crystalline polymer materials.To improve interfacial charge-transport and precisely tune the charge extraction and band alignment of 2D c-MOFs in(opto-)electronic devices[4],developing highly efficient synthetic methods of 2D c-MOFs is of utmost importance.展开更多
Organic electrode materials(OEMs)constitute an attractive class of energy storage materials for potassium-ion batteries,but their application is severely hindered by sluggish kinetics and limited capacities.Herein,ino...Organic electrode materials(OEMs)constitute an attractive class of energy storage materials for potassium-ion batteries,but their application is severely hindered by sluggish kinetics and limited capacities.Herein,inorganic molecules covalent combination strategy is proposed to drive advanced potassium organic batteries.Specifically,molecular selenium,possessing high potential of conductivity and electroactivity,is covalently bonded with organic matrix,that is symmetrical selenophene-annulated dipolyperylene diimide(PDI2-2Se),is designed to verify the feasibility.The inorganic-anchored OEM(PDI2-2Se)can be electrochemically activated to form organic(PDI2 matrix)–inorganic(Se)hybrids during initial cycles.Stateof-the-art 3D tomography reveals that a“mutual-accelerating”effect was realized,that is,the 10-nm Se quantum dots,possessing high conductivity,facilitate charge transfer in organics as well store K^(+)-ions,and organic PDI2 matrix benefits the encapsulation of Se,thereby suppressing shuttle effect and volume fluctuation during cycling,endowing resulting PDI2/Se hybrids with both high-rate capacities and longevity.The concept of inorganicconfigurated OEM through covalent bonds,in principle,can also be extended to design novel functional organic-redox electrodes for other high-performance secondary batteries.展开更多
Solar-driven(or light-driven)production of hydrogen peroxide(H_(2)O_(2))from water(H_(2)O)and molecular oxygen(O_(2))has recently received increasing attention as a green and sustainable alternative to conventional me...Solar-driven(or light-driven)production of hydrogen peroxide(H_(2)O_(2))from water(H_(2)O)and molecular oxygen(O_(2))has recently received increasing attention as a green and sustainable alternative to conventional methods.However,the field of photocatalytic H_(2)O_(2)production is still in its infancy,primarily because of limited H_(2)O_(2)production efficiency.Over the past few years,a wide range of inorganic,organic,and organic-inorganic hybrid photocatalysts have been developed via diverse synthetic and modification strategies to increase the H_(2)O_(2)yield.Among them,organic-inorganic hybrid photocatalysts have shown higher H_(2)O_(2)production performance than single-component systems;at the same time,the advancements and challenges of these hybrid systems have not been comprehensively reviewed.Therefore,this review summarizes the advantages/limitations,recent progress,and potential challenges of organic-inorganic hybrid photocatalysts for H_(2)O_(2)production.First,we elucidate the superiority of the photocatalytic H_(2)O_(2)production over the conventional anthraquinone oxidation process.Then,we summarize the advantages and limitations of inorganic,organic,and organic-inorganic hybrid photocatalysts and discuss in detail the design,synthetic strategies,and photochemical properties of organic-inorganic hybrid photocatalysts.Finally,this review outlines the challenges and outlook for future research in this emerging area.展开更多
The structure of intestinal tissue is complex.In vitro simulation of intestinal structure and function is important for studying intestinal development and diseases.Recently,organoids have been successfully constructe...The structure of intestinal tissue is complex.In vitro simulation of intestinal structure and function is important for studying intestinal development and diseases.Recently,organoids have been successfully constructed and they have come to play an important role in biomedical research.Organoids are miniaturized three-dimensional(3D)organs,derived from stem cells,which mimic the structure,cell types,and physiological functions of an organ,making them robust models for biomedical research.Intestinal organoids are 3D micro-organs derived from intestinal stem cells or pluripotent stem cells that can successfully simulate the complex structure and function of the intestine,thereby providing a valuable platform for intestinal development and disease research.In this article,we review the latest progress in the construction and application of intestinal organoids.展开更多
1 Subcellular Organelle Dysfunction and Disease Progression The precise organization of subcellular organelles is important for maintaining cellular homeostasis.Compartmentalization orchestrates metabolic processes,si...1 Subcellular Organelle Dysfunction and Disease Progression The precise organization of subcellular organelles is important for maintaining cellular homeostasis.Compartmentalization orchestrates metabolic processes,signal transductions,and stress responses.Disturbances in organelles,including the nucleus,mitochondria,lysosomes,and endoplasmic reticulum,can lead to widespread intracellular dysfunction and contribute to diverse pathologies.For example,mitochondrial reactive oxygen species(ROS)exacerbate endoplasmic reticulum(ER)stress,as demonstrated in studies linking ROS-mediated mitochondrial dysfunction to apoptosis in neurodegenerative diseases,cancer,and inflammatory diseases[1–4].ER stress has also been implicated in cardiac hypertrophy[5],lung fibrosis[6],liver fibrosis[7],and ulcerative colitis[8].展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established b...The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established by the World Health Organization(WHO). Reform in China has demonstrated the unwavering confidence and utmost determination of the Chinese government and the Chinese transplantation community. The year 2015 marked a historic turning point when voluntary donations from Chinese citizens became the sole legitimate source for organ transplantation. Since 2015, China has gradually established and refined the “Chinese Mode” and “China System” for organ donation and transplantation, fulfilling its political pledge of reform, and has garnered international recognition, and fostered a social culture which promotes organ donation. This article reviewed the history of reform on organ donation and transplantation in China, presented a new pattern of establishment of organ donation system in the new era of the country, and the direction of advances in the future.展开更多
基金supported by the Shenzhen Medical Research Fund(Grant No.A2303049)Guangdong Basic and Applied Basic Research(Grant No.2023A1515010647)+1 种基金National Natural Science Foundation of China(Grant No.22004135)Shenzhen Science and Technology Program(Grant No.RCBS20210706092409020,GXWD20201231165807008,20200824162253002).
文摘Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.
文摘Microplastic contamination has emerged as a threat in transplantation,with evidence of its presence in human tissues and potential to compromise grafts.Transplant recipients,vulnerable due to immunosuppression and surgical exposure,face risk from microplastics via airborne particles,surgical materials,and organ preservation systems.These particles trigger inflammation,oxidative stress,and immune dysregulation—pathways critical in rejection.Microplastics support biofilm formation,potentially facilitating antimicrobial resistance in clinical settings.Despite this risk,transplant-specific research is lacking.We urge action through environmental controls,material substitutions,and procedural modifications,alongside research targeting exposure pathways,biological impact,and mitigation strategies.Transplantation has historically led medical innovation and must do so in confronting this environmental challenge.Leadership from global transplant societies is essential to protect recipients and ensure safe procedures.
基金supported by Natural Science Foundation of Zhejiang Province(Nos.LQ23E030002,LZ23B040001)the National Natural Science Foundation of China(Nos.52303226,21971049)L.Zhan acknowledges the research start-up fund from Hangzhou Normal University(4095C50222204002).
文摘Organic photovoltaics(OPVs)have achieved remarkable progress,with laboratory-scale single-junction devices now demonstrating power conversion efficiencies(PCEs)exceeding 20%.However,these efficiencies are highly dependent on the thickness of the photoactive layer,which is typically around 100 nm.This sensitivity poses a challenge for industrial-scale fabrication.Achieving high PCEs in thick-film OPVs is therefore essential.This review systematically examines recent advancements in thick-film OPVs,focusing on the fundamental mechanisms that lead to efficiency loss and strategies to enhance performance.We provide a comprehensive analysis spanning the complete photovoltaic process chain:from initial exciton generation and diffusion dynamics,through dissociation mechanisms,to subsequent charge-carrier transport,balance optimization,and final collection efficiency.Particular emphasis is placed on cutting-edge solutions in molecular engineering and device architecture optimization.By synthesizing these interdisciplinary approaches and investigating the potential contributions in stability,cost,and machine learning aspects,this work establishes comprehensive guidelines for designing high-performance OPVs devices with minimal thickness dependence,ultimately aiming to bridge the gap between laboratory achievements and industrial manufacturing requirements.
文摘Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.
文摘Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.The published version showed“Hongzhen Chen”,whereas the correct spelling should be“Hongzheng Chen”.The correct author name has been provided in this Correction,and the original article[1]has been corrected.
文摘Kidney transplantation(KT)accounts for nearly three-fourths of organ transplants in India,with living donors contributing to 82%of cases.Induction immunosuppression is essential to optimize initial immunosuppression,reduce acute rejections,and enable tailored use of maintenance agents.Rabbit anti-thymocyte globulin(rATG)and interleukin-2 receptor anatagonists(IL-2RA/IL-2RBs)are the most widely used induction therapies.However,data on induction practices across India are limited.To evaluate induction immunosuppression practices across KT centers in India and establish a consensus for different subsets of KT recipients.A nationwide online survey was conducted by the Indian Society of Organ Transplantation(ISOT)among its members(400 KT centers).Responses were analyzed to assess induction practices across diverse donor types,age groups,and immunological risk profiles.Heterogeneity in practices prompted consensus building using a modified Delphi process.Literature review and expert panel discussions(April 2024)were followed by structured voting,and 16 consensus statements were finalized.Of 400 centers approached,254 participated.rATG was the most commonly used induction therapy,followed by IL-2RBs;alemtuzumab was least used.Significant heterogeneity was observed in type,dose,and duration of induction therapy.Consensus recommendations were framed:rATG for high immunological risk recipients and deceased donor KTs;IL-2RB or low-dose rATG for low immunological risk;rituximab in ABOincompatible KTs;and tailoring based on age,diabetes,donor type,infection risk,and affordability.This first ISOT consensus provides 16 India-specific statements on induction therapy in KT.It emphasizes risk-stratified,evidenceinformed,and context-appropriate induction strategies,supporting standardization of care across the country.
基金supported by the National Key Research and Development program of China (Nos. 2024YFA1410700 and 2021YFA1200700)the National Natural Science Foundation of China (Nos. T2222025, 62174053, 62474065 and 52372120)+3 种基金the Natural Science Foundation of Chongqing (CSTB2024NSCQ-JQX0005)the Shanghai Science and Technology Innovation Action Plan (Nos. 24QA2702300 and 24YF2710400)the National Postdoctoral Program (GZB20240225)the Fundamental Research Funds for the Central Universities。
文摘Poly(vinylidene-trifluoroethylene) [P(VDF-TrFE)] copolymer films generally demonstrate limited compatibility with organic semiconductors. The material is frequently compromised by exposure to organic semiconductor solutions and other fabrication processes utilized in the production of organic ferroelectric transistors. In this study, an organic ferroelectric field effect transistor(OFeFET) with the 6,13-Bis(triisopropylsilylethynyl) pentacene(TIPS-pentacene) channel is fabricated, in which the aluminum oxide(Al_(2)O_(3)) interlayer is used to improve compatibility. The device displays polymorphic memory and synaptic plasticity of long-term potentiation and depression. Furthermore, an artificial neural network constructed using our devices is simulated to succeed in recognizing the MNIST handwritten digit database with a high accuracy of 92.8%. This research offers a viable approach to enhance the compatibility of the organic ferroelectric polymer P(VDF-TrFE) with organic semiconductors.
文摘Although national transplant organizations share common visions and goals,the creation of a unified global organization remains impractical.Differences in ethnicity,culture,religion,and education shape local practices and infrastructure,making the establishment of a single global entity unfeasible.Even with these social disparities aside,logistical factors such as time and distance between organ procurement and transplantation sites pose significant challenges.While technological advancements have extended organ preservation times,they have yet to support the demands of transcontinental transplantations effectively.This review presents a comparative analysis of the structures,operational frameworks,policies,and legislation governing various transplant organizations around the world.Key differences pertain to the administration of these organizations,trends in organ donation,and organ allocation policies,which reflect the financial,cultural,and religious diversity across different regions.While a global transplant organization may be out of reach,agreeing on best practices for the benefit of patients is essential.
基金supported by the project of“Shale Gas Resources Investigation and Evaluation in the Baoshan Block”from Sinopec Exploration Company and the National Natural Science Foundation of China(41925014 and 42172192)。
文摘Lower Paleozoic black shales are important source rocks worldwide.The Upper Ordovician-Lower Silurian Renheqiao Formation of the Baoshan Block is a low-maturity equivalent of the Wufeng-Longmaxi(WF-LMX)Shale of the Sichuan Basin.However,organic matter(OM)characteristics in these low-maturity Lower Paleozoic shales are not well understood.In this study,50 Renheqiao Formation shale samples collected from seven outcrop sections and one drill core were investigated with organic petrology,organic geochemistry,R_(o)ck-Eval pyrolysis,N_(2) and CO_(2) adsorption,and scanning electron microscope(SEM)analyses to study the OM content,type,thermal maturity,and the development of OM-hosted pores in these Lower Paleozoic shales.The total organic carbon(TOC)content of the Renheqiao Formation shales varies,with the maximum content of 10.07 wt%.R_(o)ck-Eval pyrolysis results show that present OM in the Renheqiao Formation shales is Type IV kerogen,a result of advanced thermal maturation.Graptolite reflectance(GR_(o))ranges from 1.26%to 1.85%,and equivalent vitrinite reflectance(EqR_(o))converted from GR_(o) ranges from 1.08%to 1.51%,indicating that the studied Renheqiao Formation shales are dominantly within the late-mature stage.EqR_(o) based on R_(o)ck-Eval T_(max) shows large variations,which indicates that R_(o)ck-Eval T_(max) is not a reliable thermal maturity indicator for the Lower Paleozoic Renheqiao Formation shales.Caution should be applied when assessing the thermal maturity of high-maturity black shales based on T_(max) when the S2 values are too low.Organic petrographic observations show that OM in these shales is dominated by solid bitumen(>70 vol%of total OM),with minor contributions by graptolites and chitinozoans.The specific surface area and pore volume of shales are controlled by TOC content.Organic pores are hosted by solid bitumen and were not observed in graptolites when examined under the SEM.Although the Renheqiao Formation has a lower thermal maturity than the over-mature WF-LMX Shale,it is mature enough that primary oil-prone macerals have been thermally transformed and could not be identified under the microscope.
基金supported by the National Natural Science Foundation of China(Nos.51902121 and 22372067)。
文摘Covalent organic frameworks(COFs)are two-(2D)or threedimensional(3D)crystalline,porous networks generated by reversible polymerization of organic building blocks[1,2].The structures and functionalities of COFs are precisely controlled via appropriately selected organic building blocks.This design imparts unique properties to COFs,including exceptional structural stability,tunable pore structure,and surface chemical activity,making them promising for gas separation,catalysis,optoelectronics,and sensing applications.Since Yaghi et al.'s seminal report on COFs in 2005[2],these frameworks have swiftly emerged as a hotspot in the field of materials.Originally,the focus was on fabricating rigid frameworks with static structures and optoelectronic properties.However,the inherently static nature of these frameworks hinders their responsiveness to external stimuli,potentially constraining their functionality in specific applications.Hence,an increasing number of researchers are now directing their attention toward the development of dynamic COFs capable of modifying their structures in response to external stimuli[3].Specifically,dynamic 2D COFs exhibiting enhanced structural responsiveness are of particular interest due to their capability to integrate switchable geometries and porosities with semiconductor building blocks,as well as electron conjugation across COF layers and π-stacked columns,which may enable stimuli-responsive electronic and spin properties[4].
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0760200)the National Natural Science Foundation of China(Grant No.42377101,91744207).
文摘Exploring secondary organic aerosol(SOA)processes is crucial for understanding climate and air pollution in megacities.This study introduces a new method using positive matrix factorization(PMF)to investigate the SOA process by integrating the OA and associated ions previously misidentified as inorganic aerosol in high-resolution aerosol mass spectrometry data.The mass spectra and time series of primary OA(POA)and less oxidized oxygenated OA(OOA)identified by this new method resembled those resolved by traditional PMF.However,more oxidized OOA(MO-OOA)identified by traditional PMF can be further subdivided into multiple OA factors,including nitrogen-enriched OA(ON-OA)and sulfur-enriched OA(OS-OA)in summer,and ON-OA,OS-OA,and OOA in winter.Our findings highlight the significant role of photochemical processes in the formation of OS-OA compared to ON-OA.The compositions of reconstructed MO-OOA varied under different Ox(=O_(3)+NO_(2))and relative humidity conditions,emphasizing the limitations of using a constant mass spectrum.Aged biomass burning OA(BBOA)and coal combustion OA(CCOA),previously misattributed as POA,contributed 9.2%(0.43μg m^(−3))and 7.0%(0.33μg m^(−3))to SOA,respectively.Aged BBOA was more prone to forming OS-OA,whereas ON-OA showed higher correlations with aged CCOA,indicating distinct molecular compositions of SOA from different aged POA sources.Compared to aged BBOA,aged CCOA was more subject to conversion during aqueous phase processing.These results suggest that the variations in mass spectra and compositions need to be considered when simulating SOA processes.
基金support from the National Natural Science Foundation of China(22088101,21733003,22365021,22305132)the Inner Mongolia Autonomous Region“Grassland Talents”Project(2024098)+3 种基金the Inner Mongolia Natural Science Foundation Youth Fund(2023QN02014)The Local Talent Project of Inner Mongolia(12000-15042222)the Basic Research Expenses Supported under 45 Years Old of Inner Mongolia(10000-23112101/036)the“Young Academic Talents”Program of Inner Mongolia University 23600-5233706.
文摘As a class of crystalline porous materials,metal-organic frameworks(MOFs)have shown unique advantages in the fields of catalysis,gas storage and separation,but their inherent microporous structure(pore diameter<2 nm)severely limits their application in scenarios such as macromolecular mass transfer and so on.In order to overcome this re-striction,mesoporous MOFs(meso-MOFs)with a larger aperture(2-50 nm)have attracted much attention due to their potential applications in biological macromolecular catalysis,energy storage and other fields.To date,how to accurately regulate its mesopore topology and pore ordering still faces important technical challenges.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.81770091,82000099)the National Key Research and Development Program of China(Nos.2024YFC3044600,2022YFC2407400)+6 种基金the Clinical Research Plan of Shanghai Hospital Development Center(multi-center clinical research project for major diseases)(No.SHDC2020CR1021B)the scientific and technological innovation action plan of Science and Technology Commission of Shanghai Municipality(No.20DZ2253700)the Science and Technology Commission of Shanghai Municipality(Nos.20YF1440900,21YF1438500,21S31905200)the Clinical Research Foundation of Shanghai Pulmonary Hospital(Nos.FKLY20007,SKPY2021005)Shanghai Pulmonary Hospital Innovation Team(Nos.FKXY2306,FKCX1906,FKXY1902)Shanghai Pulmonary Hospital Grant(No.FKCY1903)Ningbo Top Medical and Health Research Program(No.2022030208)。
文摘Bioengineered organs have been seen as a promising strategy to address the shortage of transplantable organs.However,it is still difficult to achieve heterogeneous structures and complex functions similar to natural organs using current bioengineering techniques.This work introduces the methods and dilemmas in organ engineering and existing challenges.Furthermore,a new roadmap for organ engineering,which uses a modular strategy with autologous bioreactors to create organ-level bioengineered constructions,is summarized based on the latest research advances.In brief,different functional modules of natural organs are constructed in vitro,and autologous bioreactors in vivo are utilized to facilitate inter-module assembly to form a complete bioengineered organ capable of replacing natural organ functions.There are bioengineered organs,such as biomimetic tracheas,which have been successfully fabricated following this roadmap.This new roadmap for organ engineering shows prospects in addressing the shortage of transplantable organs and has broad prospects for clinical applications.
基金supported by the National Natural Science Foundation of China(Nos.22201086,22471084,92261204,21925104,and 22431005).
文摘Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic properties and well-defined topological structure.However,the majority of MOFs are intrinsically dielectric or insulative[1]and typically form as 3D bulk or powder crystals,making them incompatible with complementary metal-oxide semiconductor(CMOS)techniques.In recent years,layer-stacked two-dimensional conjugated MOFs(2D c-MOFs),composed of planar conjugated ligands and linkages[2],have demonstrated high in-plane π conjugation and weak out-of-plane van der Waals interactions,due to their long-range electron delocalization over metal ions and ligands[3].As a result,highly tunable band gaps from semiconductor to conductor,modulable porosity from micropore to macropore and versatile processability into conductive 2D thin films with controllable lateral thickness and domain size are presented,rendering charming potential for applications in(opto-)electronics compared with classic 2D metal oxide,chalcogenide and crystalline polymer materials.To improve interfacial charge-transport and precisely tune the charge extraction and band alignment of 2D c-MOFs in(opto-)electronic devices[4],developing highly efficient synthetic methods of 2D c-MOFs is of utmost importance.
基金supported by the National Natural Science Foundation of China(NSFC,21975194,22175134,22209127 and 52072282)Natural Science Foundation of Hubei Province(No.2023AFA014)+2 种基金the research fund for distinguished young scholars of Hubei Province(2019CFA042)the generous start-up funds from the Wuhan University of Technology(nos.2182022132)the Fundamental Research Funds for the Central Universities(195220009).
文摘Organic electrode materials(OEMs)constitute an attractive class of energy storage materials for potassium-ion batteries,but their application is severely hindered by sluggish kinetics and limited capacities.Herein,inorganic molecules covalent combination strategy is proposed to drive advanced potassium organic batteries.Specifically,molecular selenium,possessing high potential of conductivity and electroactivity,is covalently bonded with organic matrix,that is symmetrical selenophene-annulated dipolyperylene diimide(PDI2-2Se),is designed to verify the feasibility.The inorganic-anchored OEM(PDI2-2Se)can be electrochemically activated to form organic(PDI2 matrix)–inorganic(Se)hybrids during initial cycles.Stateof-the-art 3D tomography reveals that a“mutual-accelerating”effect was realized,that is,the 10-nm Se quantum dots,possessing high conductivity,facilitate charge transfer in organics as well store K^(+)-ions,and organic PDI2 matrix benefits the encapsulation of Se,thereby suppressing shuttle effect and volume fluctuation during cycling,endowing resulting PDI2/Se hybrids with both high-rate capacities and longevity.The concept of inorganicconfigurated OEM through covalent bonds,in principle,can also be extended to design novel functional organic-redox electrodes for other high-performance secondary batteries.
基金supported by National Natural Science Foundation of China (Nos. 52170030 and 52200049)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology) (No. 2024TS28)+1 种基金Fundamental Research Funds for the Central UniversitiesYoung Scientist Studio of Harbin Institute of Technology
文摘Solar-driven(or light-driven)production of hydrogen peroxide(H_(2)O_(2))from water(H_(2)O)and molecular oxygen(O_(2))has recently received increasing attention as a green and sustainable alternative to conventional methods.However,the field of photocatalytic H_(2)O_(2)production is still in its infancy,primarily because of limited H_(2)O_(2)production efficiency.Over the past few years,a wide range of inorganic,organic,and organic-inorganic hybrid photocatalysts have been developed via diverse synthetic and modification strategies to increase the H_(2)O_(2)yield.Among them,organic-inorganic hybrid photocatalysts have shown higher H_(2)O_(2)production performance than single-component systems;at the same time,the advancements and challenges of these hybrid systems have not been comprehensively reviewed.Therefore,this review summarizes the advantages/limitations,recent progress,and potential challenges of organic-inorganic hybrid photocatalysts for H_(2)O_(2)production.First,we elucidate the superiority of the photocatalytic H_(2)O_(2)production over the conventional anthraquinone oxidation process.Then,we summarize the advantages and limitations of inorganic,organic,and organic-inorganic hybrid photocatalysts and discuss in detail the design,synthetic strategies,and photochemical properties of organic-inorganic hybrid photocatalysts.Finally,this review outlines the challenges and outlook for future research in this emerging area.
基金funded by the National Natural Science Foundation of China(No.32300659)Shenzhen Science and Technology Innovation Commission Project(No.JCYJ20230807143302004)+6 种基金Zhangjiakou City Key R&D Plan Project(No.2421118D),Zhangjiakou City Key R&D Plan Project(No.2322088D)The Natural Science Project of Hebei North University(No.XJ2024034 and XJ2024035)Medical Science Research Subject Plan Project of Hebei Provincial Health Commission(No.20240782)Project of Administration of Traditional Chinese Medicine of Hebei Province(No.2025392)The 2025 Government-funded Training Project for Outstanding Clinical Medicine Talents(No.ZF2025264)Research Project of Medical Innovation for Chinese Youth(Project Leader:Jun Xue).g Project for Outstanding Clinical Medicine Talents(No.ZF2025264)Research Project of Medical Innovation for Chinese Youth(Project Leader:Jun Xue)。
文摘The structure of intestinal tissue is complex.In vitro simulation of intestinal structure and function is important for studying intestinal development and diseases.Recently,organoids have been successfully constructed and they have come to play an important role in biomedical research.Organoids are miniaturized three-dimensional(3D)organs,derived from stem cells,which mimic the structure,cell types,and physiological functions of an organ,making them robust models for biomedical research.Intestinal organoids are 3D micro-organs derived from intestinal stem cells or pluripotent stem cells that can successfully simulate the complex structure and function of the intestine,thereby providing a valuable platform for intestinal development and disease research.In this article,we review the latest progress in the construction and application of intestinal organoids.
基金funded by the National Natural Science Foundation of China(No.12272246)(YZ)partially funded by ARO(Army Research Office)(W911NF2310189)a grant from NSF(NSF 2324052)of the USA(BMF).
文摘1 Subcellular Organelle Dysfunction and Disease Progression The precise organization of subcellular organelles is important for maintaining cellular homeostasis.Compartmentalization orchestrates metabolic processes,signal transductions,and stress responses.Disturbances in organelles,including the nucleus,mitochondria,lysosomes,and endoplasmic reticulum,can lead to widespread intracellular dysfunction and contribute to diverse pathologies.For example,mitochondrial reactive oxygen species(ROS)exacerbate endoplasmic reticulum(ER)stress,as demonstrated in studies linking ROS-mediated mitochondrial dysfunction to apoptosis in neurodegenerative diseases,cancer,and inflammatory diseases[1–4].ER stress has also been implicated in cardiac hypertrophy[5],lung fibrosis[6],liver fibrosis[7],and ulcerative colitis[8].
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
文摘The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established by the World Health Organization(WHO). Reform in China has demonstrated the unwavering confidence and utmost determination of the Chinese government and the Chinese transplantation community. The year 2015 marked a historic turning point when voluntary donations from Chinese citizens became the sole legitimate source for organ transplantation. Since 2015, China has gradually established and refined the “Chinese Mode” and “China System” for organ donation and transplantation, fulfilling its political pledge of reform, and has garnered international recognition, and fostered a social culture which promotes organ donation. This article reviewed the history of reform on organ donation and transplantation in China, presented a new pattern of establishment of organ donation system in the new era of the country, and the direction of advances in the future.