为了提高图像拼接速度并满足高分辨率图像的实时拼接需求,提出了一种基于ORB(Oriented Fast and Rotated Brief)算法和MSAC(M-estimator Sample Consensus)算法的快速图像拼接方法。ORB算法特征匹配速度快,能够满足实时性要求。首先采用...为了提高图像拼接速度并满足高分辨率图像的实时拼接需求,提出了一种基于ORB(Oriented Fast and Rotated Brief)算法和MSAC(M-estimator Sample Consensus)算法的快速图像拼接方法。ORB算法特征匹配速度快,能够满足实时性要求。首先采用ORB算法进行图像特征点提取;然后,采用MSAC算法对匹配点对进行优化,剔除图像拼接中的伪匹配点对,通过正确的匹配点对求解图像变换矩阵;最后,采用双线性插值融合算法消除可见接缝并去除拼接痕迹。实验结果表明,本文方法在保证图像拼接质量的同时具有更快的拼接速度。展开更多
针对ORB(oriented FAST and rotated BRIEF)算法中存在匹配精确率低的问题,提出了一种基于LK(Lucas-Kanade)光流改进的ORB图像匹配方法。首先对待处理的图像进行直方图均衡化,然后在Oriented FAST特征点检测的同时用LK光流对其进行跟踪...针对ORB(oriented FAST and rotated BRIEF)算法中存在匹配精确率低的问题,提出了一种基于LK(Lucas-Kanade)光流改进的ORB图像匹配方法。首先对待处理的图像进行直方图均衡化,然后在Oriented FAST特征点检测的同时用LK光流对其进行跟踪,并将跟踪的特征点进行Rotated BRIEF描述,最后在特征匹配筛选环节利用RANSAC(Random Sampling Consistency)算法进行误匹配的剔除。实验结果表明,改进算法在公开数据集中的平均匹配精度为90.9%,平均特征匹配及误匹配的剔除共耗时为18ms,与原始ORB算法相比,在时间基本一致的前提下,有效的提高了匹配的精度。展开更多
文摘为了提高图像拼接速度并满足高分辨率图像的实时拼接需求,提出了一种基于ORB(Oriented Fast and Rotated Brief)算法和MSAC(M-estimator Sample Consensus)算法的快速图像拼接方法。ORB算法特征匹配速度快,能够满足实时性要求。首先采用ORB算法进行图像特征点提取;然后,采用MSAC算法对匹配点对进行优化,剔除图像拼接中的伪匹配点对,通过正确的匹配点对求解图像变换矩阵;最后,采用双线性插值融合算法消除可见接缝并去除拼接痕迹。实验结果表明,本文方法在保证图像拼接质量的同时具有更快的拼接速度。
文摘针对ORB(oriented FAST and rotated BRIEF)算法中存在匹配精确率低的问题,提出了一种基于LK(Lucas-Kanade)光流改进的ORB图像匹配方法。首先对待处理的图像进行直方图均衡化,然后在Oriented FAST特征点检测的同时用LK光流对其进行跟踪,并将跟踪的特征点进行Rotated BRIEF描述,最后在特征匹配筛选环节利用RANSAC(Random Sampling Consistency)算法进行误匹配的剔除。实验结果表明,改进算法在公开数据集中的平均匹配精度为90.9%,平均特征匹配及误匹配的剔除共耗时为18ms,与原始ORB算法相比,在时间基本一致的前提下,有效的提高了匹配的精度。