期刊文献+
共找到669篇文章
< 1 2 34 >
每页显示 20 50 100
High-pressure research on optoelectronic materials:Insights from in situ characterization methods
1
作者 Songhao Guo Yiqiang Zhan Xujie Lü 《Matter and Radiation at Extremes》 2025年第3期10-23,共14页
High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitt... High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials,which are vital for a wide range of applications,including photovoltaics,light-emitting devices,and photodetectors.This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical,electronic,and structural properties of optoelectronic materials.We explore the advances that have been made in techniques such as X-ray diffraction,absorption spectroscopy,nonlinear optics,photoluminescence spectroscopy,Raman spectroscopy,and photoresponse measurement,emphasizing how these methods have enhanced the elucidation of structural transitions,bandgap modulation,performance optimization,and carrier dynamics engineering.These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications. 展开更多
关键词 optoelectronic materialswe x ray diffraction nonlinear optics situ characterization methods situ characterization optoelectronic materialswhich absorption spectroscopy optoelectronic materials
在线阅读 下载PDF
Ion-modulation optoelectronic neuromorphic devices:mechanisms,characteristics,and applications 被引量:1
2
作者 Xiaohan Meng Runsheng Gao +1 位作者 Xiaojian Zhu Run-Wei Li 《Journal of Semiconductors》 2025年第2期24-36,共13页
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph... The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field. 展开更多
关键词 ion migration optoelectronic modulation optoelectronic device neuromorphic computing artificial vision system
在线阅读 下载PDF
On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces 被引量:2
3
作者 Cheng-Long Zheng Pei-Nan Ni +1 位作者 Yi-Yang Xie Patrice Genevet 《Opto-Electronic Advances》 2025年第1期5-30,共26页
Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologie... Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed,which has profoundly reshaped the modern life with a wide range of applications.In recent decades,semiconductor technology has rapidly evolved from first-generation narrow bandgap materials(Si,Ge)to the latest fourth-generation ultra-wide bandgap semiconductor(GaO,diamond,AlN)with enhanced performance to meet growing demands.Additionally,merging semiconductor devices with other techniques,such as computer assisted design,state-of-the-art micro/nano fabrications,novel epitaxial growth,have significantly accelerated the development of semiconductor optoelectronics devices.Among them,integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response,providing access to previously inaccessible degrees of freedom.We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces,including semiconductor lasers,semiconductor light emitting devices,semiconductor photodetectors,and low dimensional semiconductors.The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices,while also providing a practical platform for implementing cuttingedge metasurface technology in real-world applications. 展开更多
关键词 optoelectronicS NANOPHOTONICS metasurfaces SEMICONDUCTOR
在线阅读 下载PDF
Optoelectronic memristor based on a-C:Te film for muti-mode reservoir computing 被引量:2
4
作者 Qiaoling Tian Kuo Xun +7 位作者 Zhuangzhuang Li Xiaoning Zhao Ya Lin Ye Tao Zhongqiang Wang Daniele Ielmini Haiyang Xu Yichun Liu 《Journal of Semiconductors》 2025年第2期144-149,共6页
Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic ... Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system. 展开更多
关键词 optoelectronic memristor volatile switching muti-mode reservoir computing
在线阅读 下载PDF
Nanowatt-level optoelectronic GaN-based heterostructure artificial synaptic device for associative learning and neuromorphic computing 被引量:1
5
作者 Teng Zhan Jianwen Sun +6 位作者 Jin Lin Banghong Zhang Guanwan Liao Zewen Liu Junxi Wang Jinmin Li Xiaoyan Yi 《Journal of Semiconductors》 2025年第2期114-120,共7页
In recent years,research focusing on synaptic device based on phototransistors has provided a new method for asso-ciative learning and neuromorphic computing.A TiO_(2)/AlGaN/GaN heterostructure-based synaptic phototra... In recent years,research focusing on synaptic device based on phototransistors has provided a new method for asso-ciative learning and neuromorphic computing.A TiO_(2)/AlGaN/GaN heterostructure-based synaptic phototransistor is fabricated and measured,integrating a TiO_(2)nanolayer gate and a two-dimensional electron gas(2DEG)channel to mimic the synaptic weight and the synaptic cleft,respectively.The maximum drain to source current is 10 nA,while the device is driven at a reverse bias not exceeding-2.5 V.A excitatory postsynaptic current(EPSC)of 200 nA can be triggered by a 365 nm UVA light spike with the duration of 1 s at light intensity of 1.35μW·cm^(-2).Multiple synaptic neuromorphic functions,including EPSC,short-term/long-term plasticity(STP/LTP)and paried-pulse facilitation(PPF),are effectively mimicked by our GaN-based het-erostructure synaptic device.In the typical Pavlov’s dog experiment,we demonstrate that the device can achieve"retraining"process to extend memory time through enhancing the intensity of synaptic weight,which is similar to the working mecha-nism of human brain. 展开更多
关键词 GAN HETEROSTRUCTURE neuromorphic SYNAPTIC optoelectronic phototransisitor pavlov
在线阅读 下载PDF
Reconfigurable organic ambipolar optoelectronic synaptic transistor for information security access 被引量:1
6
作者 Xinqi Ma Wenbin Zhang +11 位作者 Qi Zheng Wenbiao Niu Zherui Zhao Kui Zhou Meng Zhang Shuangmei Xue Liangchao Guo Yan Yan Guanglong Ding Suting Han Vellaisamy A.L.Roy Ye Zhou 《Journal of Semiconductors》 2025年第2期133-142,共10页
In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information secu... In this data explosion era,ensuring the secure storage,access,and transmission of information is imperative,encom-passing all aspects ranging from safeguarding personal devices to formulating national information security strategies.Leverag-ing the potential offered by dual-type carriers for transportation and employing optical modulation techniques to develop high reconfigurable ambipolar optoelectronic transistors enables effective implementation of information destruction after read-ing,thereby guaranteeing data security.In this study,a reconfigurable ambipolar optoelectronic synaptic transistor based on poly(3-hexylthiophene)(P3HT)and poly[[N,N-bis(2-octyldodecyl)-napthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)](N2200)blend film was fabricated through solution-processed method.The resulting transistor exhib-ited a relatively large ON/OFF ratio of 10^(3) in both n-and p-type regions,and tunable photoconductivity after light illumination,particularly with green light.The photo-generated carriers could be effectively trapped under the gate bias,indicating its poten-tial application in mimicking synaptic behaviors.Furthermore,the synaptic plasticity,including volatile/non-volatile and excita-tory/inhibitory characteristics,could be finely modulated by electrical and optical stimuli.These optoelectronic reconfigurable properties enable the realization of information light assisted burn after reading.This study not only offers valuable insights for the advancement of high-performance ambipolar organic optoelectronic synaptic transistors but also presents innovative ideas for the future information security access systems. 展开更多
关键词 RECONFIGURABLE AMBIPOLAR optoelectronic synaptic transistor light assisted burn after reading
在线阅读 下载PDF
Electrolyte-gated optoelectronic transistors for neuromorphic applications 被引量:1
7
作者 Jinming Bi Yanran Li +2 位作者 Rong Lu Honglin Song Jie Jiang 《Journal of Semiconductors》 2025年第2期6-22,共17页
The traditional von Neumann architecture has demonstrated inefficiencies in parallel computing and adaptive learn-ing,rendering it incapable of meeting the growing demand for efficient and high-speed computing.Neuromo... The traditional von Neumann architecture has demonstrated inefficiencies in parallel computing and adaptive learn-ing,rendering it incapable of meeting the growing demand for efficient and high-speed computing.Neuromorphic comput-ing with significant advantages such as high parallelism and ultra-low power consumption is regarded as a promising pathway to overcome the limitations of conventional computers and achieve the next-generation artificial intelligence.Among various neuromorphic devices,the artificial synapses based on electrolyte-gated transistors stand out due to their low energy consump-tion,multimodal sensing/recording capabilities,and multifunctional integration.Moreover,the emerging optoelectronic neuro-morphic devices which combine the strengths of photonics and electronics have demonstrated substantial potential in the neu-romorphic computing field.Therefore,this article reviews recent advancements in electrolyte-gated optoelectronic neuromor-phic transistors.First,it provides an overview of artificial optoelectronic synapses and neurons,discussing aspects such as device structures,operating mechanisms,and neuromorphic functionalities.Next,the potential applications of optoelectronic synapses in different areas such as artificial visual system,pain system,and tactile perception systems are elaborated.Finally,the current challenges are summarized,and future directions for their developments are proposed. 展开更多
关键词 neuromorphic computing electrolyte-gated transistors artificial synapses optoelectronic devices
在线阅读 下载PDF
Recent progress in organic optoelectronic synaptic transistor arrays:fabrication strategies and innovative applications of system integration 被引量:1
8
作者 Pu Guo Junyao Zhang Jia Huang 《Journal of Semiconductors》 2025年第2期72-86,共15页
The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and d... The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and data latency.In contrast,data-centric computing that integrates processing and storage has the potential of reducing latency and energy usage.Organic optoelectronic synaptic transistors have emerged as one type of promising devices to implement the data-centric com-puting paradigm owing to their superiority of flexibility,low cost,and large-area fabrication.However,sophisticated functions including vector-matrix multiplication that a single device can achieve are limited.Thus,the fabrication and utilization of organic optoelectronic synaptic transistor arrays(OOSTAs)are imperative.Here,we summarize the recent advances in OOSTAs.Various strategies for manufacturing OOSTAs are introduced,including coating and casting,physical vapor deposition,printing,and photolithography.Furthermore,innovative applications of the OOSTA system integration are discussed,including neuromor-phic visual systems and neuromorphic computing systems.At last,challenges and future perspectives of utilizing OOSTAs in real-world applications are discussed. 展开更多
关键词 organic transistor arrays optoelectronic synaptic transistors neuromorphic systems system integration
在线阅读 下载PDF
Adaptive optoelectronic transistor for intelligent vision system 被引量:1
9
作者 Yiru Wang Shanshuo Liu +5 位作者 Hongxin Zhang Yuchen Cao Zitong Mu Mingdong Yi Linghai Xie Haifeng Ling 《Journal of Semiconductors》 2025年第2期53-70,共18页
Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances a... Recently,for developing neuromorphic visual systems,adaptive optoelectronic devices become one of the main research directions and attract extensive focus to achieve optoelectronic transistors with high performances and flexible func-tionalities.In this review,based on a description of the biological adaptive functions that are favorable for dynamically perceiv-ing,filtering,and processing information in the varying environment,we summarize the representative strategies for achiev-ing these adaptabilities in optoelectronic transistors,including the adaptation for detecting information,adaptive synaptic weight change,and history-dependent plasticity.Moreover,the key points of the corresponding strategies are comprehen-sively discussed.And the applications of these adaptive optoelectronic transistors,including the adaptive color detection,sig-nal filtering,extending the response range of light intensity,and improve learning efficiency,are also illustrated separately.Lastly,the challenges faced in developing adaptive optoelectronic transistor for artificial vision system are discussed.The descrip-tion of biological adaptive functions and the corresponding inspired neuromorphic devices are expected to provide insights for the design and application of next-generation artificial visual systems. 展开更多
关键词 adaptive optoelectronic transistor neuromorphic computing artificial vision
在线阅读 下载PDF
Copper indium sulfide colloidal quantum dots: Advances in synthesis, structure-optoelectronic properties, and applications
10
作者 Yiming Xia Nilotpal Kapuria +7 位作者 Mingrui He Uma VGhorpade Xinyao Guo Bohan Hao Seung Wook Shin Ziv Hameiri Xiaojing Hao Mahesh P.Suryawanshi 《Advanced Powder Materials》 2025年第3期12-31,共20页
The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing area... The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing areas such as displays,lighting,photocatalysis,bio-imaging,and photonics devices and so on.Among the myriad QDs technologies,industrially relevant CuInS_(2)(CIS)QDs have emerged as promising alternatives to traditional Cd-and Pb-based QDs.Their tunable optoelectronic properties,high absorption coefficient,compositional flexibility,remarkable stability as well as Restriction of Hazardous Substances-compliance,with recent trends revealing a renewed interest in this material for various visible and near-infrared technological applications.This review focuses on recent advancements in CIS QDs as multidisciplinary field from its genesis in the mid-1990 to date with an emphasis on key breakthroughs in their synthesis,surface chemistry,post-synthesis modifications,and various applications.First,the comparation of properties of CIS QDs with relevant knowledge from other classes of QDs and from Ⅰ-Ⅱ-Ⅲ semiconductors as well is summarized.Second,recent advances in the synthesis methods,structure-optoelectronic properties,their defects,and passivation strategies as well as CIS-based heterostructures are discussed.Third,the state-of-the-art applications of CIS QDs ranging from solar cells,luminescence solar concentrations,photocatalysis,light emitting diodes,bioimaging and some emerging applications are summarized.Finally,we discuss open challenges and future perspectives for further advancement in this field. 展开更多
关键词 Copper indium sulfide Quantum dots Core/shell optoelectronic properties Luminescent solar concentrators Photovoltaics PHOTOCATALYSIS LEDS BIOIMAGING
在线阅读 下载PDF
Light Management in 2D Perovskite Toward High-Performance Optoelectronic Applications
11
作者 Kailian Dong Tao Jiang +9 位作者 Guoyi Chen Hongsen Cui Shuxin Wang Shun Zhou Chen Wang Yi Yang Fang Yao Chen Tao Weijun Ke Guojia Fang 《Nano-Micro Letters》 2025年第6期128-142,共15页
Two-dimensional Dion-Jacobson(DJ)perovskite has garnered significant attention due to its superior responsivity and operation stability.However,efforts are predominantly focused on discovering new organic spacer to sy... Two-dimensional Dion-Jacobson(DJ)perovskite has garnered significant attention due to its superior responsivity and operation stability.However,efforts are predominantly focused on discovering new organic spacer to synthesize novel perovskites,while material-form-associated light management,which is crucial for enhancing the photodetector’s efficiency,is largely overlooked.Herein,we introduced surface light management strategy into DJ-type perovskite system by synthesizing surface-patterned BDAPbBr4(BPB,BDA=NH_(3)(CH_(2))_(4)NH_(3))microplates(MPs)using template-assisted space-confined method,which was further elucidated by theoretical optical simulation.By leveraging surface-patterned MPs to enhance light absorption,the BPB-based photodetectors(PDs)achieved remarkable photoresponse in ultraviolet region,marked by a high on/off ratio(~5000),superior responsivity(2.24 A W^(-1)),along with large detectivity(~10^(13) Jones)and low detection limit(68.7 nW cm^(-2)).Additionally,the PDs showcased superior light communication and imaging capabilities even under weak-light illumination.Notably,the anisotropic nature of the surface-patterned MPs conferred excellent polarization sensitivity to the PD.These results represented the first demonstration of BPB perovskite in weak-light communication and imaging,as well as in polarized light detection.Our findings offer valuable insights into enhancing photodetector performance and optoelectronic applications through surface light management strategies. 展开更多
关键词 Light management Dion-Jacobson perovskite Surface-patterned optoelectronic applications Polarization-sensitive
在线阅读 下载PDF
Preface to Special Topic on Quantum Dot Semiconductor Optoelectronic Materials,Devices,and Characterization
12
作者 Zeke Liu Wanli Ma 《Journal of Semiconductors》 2025年第4期2-3,共2页
The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly ... The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly emerged in the field of optoelectronic applications due to their unique size-,composition-,surface-,and process-dependent optoelectronic properties.More importantly,their ultra-high specific surface area allows for the application of various surface chemical engineering techniques to regulate and optimize their optoelectronic performance.Furthermore,three-dimensionally confined QDs can achieve nearly perfect photoluminescence quantum yields and extended hot carrier cooling times.Particularly,their ability to be colloidally synthesized and processed using industrially friendly solvents is driving transformative changes in the fields of electronics,photonics,and optoelectronics. 展开更多
关键词 surface chemical engineering techniques quantum dots class materials molecular materials colloidal quantum dots colloidal quantum dots qds REGULATE optoelectronic applications
在线阅读 下载PDF
Exploration of English Teaching Reform:Case Study of USST Optoelectronic Information Science and Engineering Major
13
作者 ZHANG Qian ZHANG Yongsheng 《Sino-US English Teaching》 2025年第4期133-139,共7页
With the vigorous development of Sino-foreign cooperative education,English teaching for specialized courses has become a crucial link in cultivating internationalized professionals.This paper takes the Optoelectronic... With the vigorous development of Sino-foreign cooperative education,English teaching for specialized courses has become a crucial link in cultivating internationalized professionals.This paper takes the Optoelectronic Information Science and Engineering(Sino-German Cooperation)major of the University of Shanghai for Science and Technology as the research object,and deeply analyzes the dilemmas faced by English teaching in this major,such as significant differences in students’English foundations,poor adaptability of teaching resources,and insufficient cultivation of cross-cultural communication skills.Based on this,a series of teaching reform strategies are proposed,covering aspects,such as optimizing teaching objectives,innovating curriculum settings,changing teaching methods,strengthening the construction of the teaching staff,and improving the teaching evaluation system.Specific teaching reform cases are also incorporated,aiming to improve the quality of English teaching for specialized courses and cultivate internationalized talents with solid professional knowledge and excellent English capabilities. 展开更多
关键词 Sino-foreign cooperative education English teaching reform for specialized courses optoelectronic Information Science and Engineering Sino-German Cooperation
在线阅读 下载PDF
Optoelectronic Synapses Based on MXene/Violet Phosphorus van der Waals Heterojunctions for Visual‑Olfactory Crossmodal Perception 被引量:4
14
作者 Hailong Ma Huajing Fang +3 位作者 Xinxing Xie Yanming Liu He Tian Yang Chai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期38-52,共15页
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept... The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics. 展开更多
关键词 Violet phosphorus MXene Van der Waals heterojunctions optoelectronic synapses Crossmodal perception
在线阅读 下载PDF
Tailoring Classical Conditioning Behavior in TiO_(2) Nanowires:ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware 被引量:1
15
作者 Wenxiao Wang Yaqi Wang +5 位作者 Feifei Yin Hongsen Niu Young-Kee Shin Yang Li Eun-Seong Kim Nam-Young Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期265-280,共16页
Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex asso... Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex associative learning behaviors is still nascent.Here,an optoelec-tronic memristor based on Ag/TiO_(2) Nanowires:ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors.Effective implementation of synaptic behaviors,including long and short-term plasticity,and learning-forgetting-relearning behaviors,were achieved in the device through the application of light and electrical stimuli.Leveraging the optoelectronic co-modulated characteristics,a simulation of neuromorphic computing was conducted,resulting in a handwriting digit recognition accuracy of 88.9%.Furthermore,a 3×7 memristor array was constructed,confirming its application in artificial visual memory.Most importantly,complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli,respectively.After training through associative pairs,reflexes could be triggered solely using light stimuli.Comprehen-sively,under specific optoelectronic signal applications,the four features of classical conditioning,namely acquisition,extinction,recovery,and generalization,were elegantly emulated.This work provides an optoelectronic memristor with associative behavior capabilities,offering a pathway for advancing brain-machine interfaces,autonomous robots,and machine self-learning in the future. 展开更多
关键词 Artificial intelligence Classical conditioning Neuromorphic computing Artificial visual memory optoelectronic memristors ZnO Quantum dots
在线阅读 下载PDF
Electron-transporting boron-doped polycyclic aromatic hydrocarbons:Facile synthesis and heteroatom doping positions-modulated optoelectronic properties 被引量:1
16
作者 Tingting Huang Zhuanlong Ding +6 位作者 Hao Liu Ping-An Chen Longfeng Zhao Yuanyuan Hu Yifan Yao Kun Yang Zebing Zeng 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期447-451,共5页
While heteroatom doping serves as a powerful strategy for devising novel polycyclic aromatic hydrocarbons(PAHs), the further fine-tuning of optoelectronic properties via the precisely altering of doping patterns remai... While heteroatom doping serves as a powerful strategy for devising novel polycyclic aromatic hydrocarbons(PAHs), the further fine-tuning of optoelectronic properties via the precisely altering of doping patterns remains a challenge. Herein, by changing the doping positions of heteroatoms in a diindenopyrene skeleton, we report two isomeric boron, sulfur-embedded PAHs, named Anti-B_(2)S_(2) and Syn-B_(2)S_(2), as electron transporting semiconductors. Detailed structure-property relationship studies revealed that the varied heteroatom positions not only change their physicochemical properties, but also largely affect their solid-state packing modes and Lewis base-triggered photophysical responses. With their low-lying frontier molecular orbital levels, n-type characteristics with electron mobilities up to 1.5 × 10^(-3)cm^(2)V^(-1)s^(-1)were achieved in solution-processed organic field-effect transistors. Our work revealed the critical role of controlling heteroatom doping patterns for designing advanced PAHs. 展开更多
关键词 Polycyclic aromatic hydrocarbon optoelectronic properties Heteroatom doping n-Type organic semiconductors Structure–property relationship
原文传递
Optoelectronic and thermoelectric properties of spinel chalcogenides HgLa_(2)X_(4)(X=S and Se):A first-principles study
17
作者 Aparna Dixit Inas AAhmed +4 位作者 Jisha Annie Abraham Zeinhom MEl-Bahy Mumtaz Manzoor Sajad Ahmad Dar Ramesh Sharma 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第10期1927-1936,共10页
We investigated spinel chalcogenides HgLa_(2)(S/Se)_(4)by using density function theory,and scrutinized the structural,optical,electrical,mechanical and thermoelectric transport characteristics of HgLa_(2)(S/Se)_(4)sp... We investigated spinel chalcogenides HgLa_(2)(S/Se)_(4)by using density function theory,and scrutinized the structural,optical,electrical,mechanical and thermoelectric transport characteristics of HgLa_(2)(S/Se)_(4)spinel chalcogenides.The enthalpy of formation,energy of cohesion,and energy volume optimum plots were used to obtain the stability as well as the perfect ground state of these materials.The ductility of these materials was the best illustrated with the help of Poisson's and Pugh's ratios.The band gap results were obtained using Trans and Blaha modified Becke-Johanson potential(TB-mBJ).Both the materials present semi-conducting nature with direct band gap equal to 1.449 and 0.892 eV respectively for HgLa_(2)S_(4)and HgLa_(2)Se_(4).Calculations were also made for optical characteristics with the values of dielectric function,absorption coefficient,optical conductivity,reflectivity,and refractive indices.According to the findings,both of these materials are suitable for infrared optoelectronic applications.These materials were found to have promising optoelectronic and thermoelectric applications after their optical properties and transport aspects were evaluated.Despite tiny levels of temperature conductivities,substantial am ounts of power conductivities,the figure of merit(more than unity),as well as Seebecs coefficients all point to the potential use of both the materials in thermoelectric power generators. 展开更多
关键词 Density functional theory Direct band gap optoelectronic Thermoelectric Semiconductors Power factor
原文传递
Observation of regular pulse train in a narrow-band optoelectronic oscillator
18
作者 ZHAO Chunbo TUO Zhuoyue +3 位作者 YAO Jiali HE Yuling ZHAI Shenghua MENG Yansong 《Optoelectronics Letters》 EI 2024年第2期94-99,共6页
We have experimentally observed a new operating state of a regular pulse train in a narrow-band optoelectronic oscillator(OEO) system, where the direct-current(DC) bias of the Mach-Zehnder modulator is set at the maxi... We have experimentally observed a new operating state of a regular pulse train in a narrow-band optoelectronic oscillator(OEO) system, where the direct-current(DC) bias of the Mach-Zehnder modulator is set at the maximum value of the transmission transfer function instead of the usual quadrature point. The observed quasi-steady-state pulse train is distinctly periodic, with a period of 10.5 μs and a center frequency of 10 GHz, and resembles a mode-locked OEO in its waveform. The formation of regular pulses here may arise from the dynamic balance of nonlinearity and narrow-band filter effects, with the transient characteristics of the pulses arising mainly from instabilities between the gain and cavity loss. Our results are of great importance for deepening the understanding of the nonlinear dynamical processes in OEO systems. 展开更多
关键词 optoelectronic PULSE MODULATOR
原文传递
Monolithically Integrating a 180° Bent Waveguide into a III-Nitride Optoelectronic On-Chip System
19
作者 ZHANG Hao YE Ziqi +2 位作者 YUAN Jialei LIU Pengzhan WANG Yongjin 《ZTE Communications》 2024年第4期40-45,共6页
GaN-based devices have developed significantly in recent years due to their promising applications and research potential.A major goal is to monolithically integrate various GaN-based components onto a single chip to ... GaN-based devices have developed significantly in recent years due to their promising applications and research potential.A major goal is to monolithically integrate various GaN-based components onto a single chip to create future optoelectronic systems with low power consumption.This miniaturized integration not only enhances multifunctional performance but also reduces material,processing,and packaging costs.In this study,we present an optoelectronic on-chip system fabricated using a top-down approach on a III-nitride-on-silicon wafer.The system includes a near-ultraviolet light source,a monitor,a 180°bent waveguide,an electro-absorption modulator,and a receiver,all integrated without the need for regrowth or post-growth doping.35 Mbit/s optical data communication is demonstrated through light propagation within the system,confirming its potential for compact GaN-based optoelectronic solutions. 展开更多
关键词 optoelectronic integration bent waveguide on-chip system III-nitride-on-Si
在线阅读 下载PDF
Recent progress of interface self-assembled monolayers engineering organic optoelectronic devices
20
作者 Yang Liu Deyang Ji Wenping Hu 《DeCarbon》 2024年第1期47-66,共20页
Numerous reports have suggested that the performance of organic optoelectronic devices based on organicfieldeffect transistors(OFETs)is largely dependent on their interfaces.Self-assembled monolayers(SAMs)have been co... Numerous reports have suggested that the performance of organic optoelectronic devices based on organicfieldeffect transistors(OFETs)is largely dependent on their interfaces.Self-assembled monolayers(SAMs)have been commonly used to engineer the interfaces of high-performance devices,particularly due to their well-defined structures and simple operation process through simple chemical adsorption growth.In this review,the structures of OFETs and SAM-modified OFETs are described,while different SAMs have been characterized.Furthermore,recent advances in the interface engineering of OFETs are described,the applicability of SAMs in functional devices of OFETs is reviewed,and existing problems and future developments in thisfield have been identified. 展开更多
关键词 Self-assembled monolayers Interface engineering Organic optoelectronic devices APPLICATIONS
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部