An electron injector concept for a laser-plasma accelerator has been developed which relies on the use of counter propagating ultrashort laser pulses. In this paper, we use OOPIC the fully self-consistent, twodimensio...An electron injector concept for a laser-plasma accelerator has been developed which relies on the use of counter propagating ultrashort laser pulses. In this paper, we use OOPIC the fully self-consistent, twodimensional, particle-in-cell code to make a parameter study to determine the bunches that can be obtained through collisions of two collinear laser pulses in uniform plasma. A series of simulations show that one can obtain a short (<10fs) bunch with its charge of about 15pC, and energy spread of about 15%. We also discussed the variation of the transverse spot size of the electron bunch and found the bunch would undergo the betatron oscillations.展开更多
In this paper, 2-D Particle-In-Cell simulations are made for Laser Wakefield Accelerations (LWFA). As in a real experiment, we perform plasma density scanning for typical 100 TW laser facilities. Several basic laws ...In this paper, 2-D Particle-In-Cell simulations are made for Laser Wakefield Accelerations (LWFA). As in a real experiment, we perform plasma density scanning for typical 100 TW laser facilities. Several basic laws for self-injected acceleration in a bubble regime are presented. According to these laws, we choose a proper plasma density and then obtain a high quality quasi-monoenergetic electron bunch with a rms energy of more than 650 MeV and a bunch length of less than 1.5 μm.展开更多
基金Supported by NSFC (10525525, 10775154, 10575114)Knowledge Innovation Funds of IHEP, CAS (H75452A0U2)
文摘An electron injector concept for a laser-plasma accelerator has been developed which relies on the use of counter propagating ultrashort laser pulses. In this paper, we use OOPIC the fully self-consistent, twodimensional, particle-in-cell code to make a parameter study to determine the bunches that can be obtained through collisions of two collinear laser pulses in uniform plasma. A series of simulations show that one can obtain a short (<10fs) bunch with its charge of about 15pC, and energy spread of about 15%. We also discussed the variation of the transverse spot size of the electron bunch and found the bunch would undergo the betatron oscillations.
基金Supported by NSFC (10525525, 10775154)Knowledge Innovation Fund of IHEP,CAS (H75452A0U2)
文摘In this paper, 2-D Particle-In-Cell simulations are made for Laser Wakefield Accelerations (LWFA). As in a real experiment, we perform plasma density scanning for typical 100 TW laser facilities. Several basic laws for self-injected acceleration in a bubble regime are presented. According to these laws, we choose a proper plasma density and then obtain a high quality quasi-monoenergetic electron bunch with a rms energy of more than 650 MeV and a bunch length of less than 1.5 μm.