期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于AI技术的项目安全监测系统开发
1
作者 张振辉 《建筑技术开发》 2024年第S1期131-137,共7页
项目安全施工是项目管理的首要任务,项目安全管理必须始终贯彻本质安全的要求,安全第一、预防为主。随着科学技术进步,AI技术不断应用到各个行业。本文基于AI技术对项目安全设施(安全帽、反光背心等)、火灾(烟雾、火光)等进行识别、报警... 项目安全施工是项目管理的首要任务,项目安全管理必须始终贯彻本质安全的要求,安全第一、预防为主。随着科学技术进步,AI技术不断应用到各个行业。本文基于AI技术对项目安全设施(安全帽、反光背心等)、火灾(烟雾、火光)等进行识别、报警,将安全隐患消灭于萌芽状态,切实保证项目施工安全。 展开更多
关键词 AI YOLO PyTorch Visual Studio2022 SQL 计算机视觉技术 人脸识别 模型训练 ML onnx 识别 报警
在线阅读 下载PDF
3D Semantic Deep Learning Networks for Leukemia Detection 被引量:1
2
作者 Javaria Amin Muhammad Sharif +4 位作者 Muhammad Almas Anjum Ayesha Siddiqa Seifedine Kadry Yunyoung Nam Mudassar Raza 《Computers, Materials & Continua》 SCIE EI 2021年第10期785-799,共15页
White blood cells(WBCs)are a vital part of the immune system that protect the body from different types of bacteria and viruses.Abnormal cell growth destroys the body’s immune system,and computerized methods play a v... White blood cells(WBCs)are a vital part of the immune system that protect the body from different types of bacteria and viruses.Abnormal cell growth destroys the body’s immune system,and computerized methods play a vital role in detecting abnormalities at the initial stage.In this research,a deep learning technique is proposed for the detection of leukemia.The proposed methodology consists of three phases.Phase I uses an open neural network exchange(ONNX)and YOLOv2 to localize WBCs.The localized images are passed to Phase II,in which 3D-segmentation is performed using deeplabv3 as a base network of the pre-trained Xception model.The segmented images are used in Phase III,in which features are extracted using the darknet-53 model and optimized using Bhattacharyya separately criteria to classify WBCs.The proposed methodology is validated on three publically available benchmark datasets,namely ALL-IDB1,ALL-IDB2,and LISC,in terms of different metrics,such as precision,accuracy,sensitivity,and dice scores.The results of the proposed method are comparable to those of recent existing methodologies,thus proving its effectiveness. 展开更多
关键词 YOLOv2 darknet53 Bhattacharyya separately criteria onnx
在线阅读 下载PDF
基于.NET Framework开发的深度学习图像裂缝检测方法 被引量:1
3
作者 秦龙焜 《电子技术与软件工程》 2020年第20期128-130,共3页
本文针对无人机采集的图像中桥梁裂缝自动化检测的问题,首先在Python环境利用PyTorch框架采用VGG16网络架构对裂缝图像进行训练,然后将训练好的网络模型和参数导出为开放神经网络交换ONNX格式文件,最后在.NETFramework程序中通过ML.NET... 本文针对无人机采集的图像中桥梁裂缝自动化检测的问题,首先在Python环境利用PyTorch框架采用VGG16网络架构对裂缝图像进行训练,然后将训练好的网络模型和参数导出为开放神经网络交换ONNX格式文件,最后在.NETFramework程序中通过ML.NET加载训练好的ONNX文件对图像进行裂缝检测。实验结果表明了本文提出的图像裂缝检测方法过程的有效性,实现了在.NET Framework环境中部署深度神经网络进行实际生产应用。 展开更多
关键词 深度学习 裂缝检测 .NET Framework PyTorch onnx文件
在线阅读 下载PDF
GUI-Based DL-Network Designer for KISTI’s Supercomputer Users
4
作者 Jaegwang Lee Jongsuk R.Lee Sunil Ahn 《Computers, Materials & Continua》 SCIE EI 2021年第11期1611-1629,共19页
With the increase in research on AI(Artificial Intelligence),the importance of DL(Deep Learning)in various fields,such as materials,biotechnology,genomes,and new drugs,is increasing significantly,thereby increasing th... With the increase in research on AI(Artificial Intelligence),the importance of DL(Deep Learning)in various fields,such as materials,biotechnology,genomes,and new drugs,is increasing significantly,thereby increasing the number of deep-learning framework users.However,to design a deep neural network,a considerable understanding of the framework is required.To solve this problem,a GUI(Graphical User Interface)-based DNN(Deep Neural Network)design tool is being actively researched and developed.The GUI-based DNN design tool can design DNNs quickly and easily.However,the existing GUI-based DNN design tool has certain limitations such as poor usability,framework dependency,and difficulty encountered in changing GUI components.In this study,a deep learning algorithm that solves the problem of poor usability was developed using a template to increase the accessibility for users.Moreover,the proposed tool was developed to save and share only the necessary parts for quick operation.To solve the framework dependency,we applied ONNX(Open Neural Network Exchange),which is an exchange standard for neural networks,and configured it such that DNNs designed with the existing deep-learning framework can be imported.Finally,to address the difficulty encountered in changing GUI components,we defined and developed the JSON format to quickly respond to version updates.The developed DL neural network designer was validated by running it with KISTI’s supercomputer-based AI Studio. 展开更多
关键词 Deep neural network design onnx GUI design tool deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部