White blood cells(WBCs)are a vital part of the immune system that protect the body from different types of bacteria and viruses.Abnormal cell growth destroys the body’s immune system,and computerized methods play a v...White blood cells(WBCs)are a vital part of the immune system that protect the body from different types of bacteria and viruses.Abnormal cell growth destroys the body’s immune system,and computerized methods play a vital role in detecting abnormalities at the initial stage.In this research,a deep learning technique is proposed for the detection of leukemia.The proposed methodology consists of three phases.Phase I uses an open neural network exchange(ONNX)and YOLOv2 to localize WBCs.The localized images are passed to Phase II,in which 3D-segmentation is performed using deeplabv3 as a base network of the pre-trained Xception model.The segmented images are used in Phase III,in which features are extracted using the darknet-53 model and optimized using Bhattacharyya separately criteria to classify WBCs.The proposed methodology is validated on three publically available benchmark datasets,namely ALL-IDB1,ALL-IDB2,and LISC,in terms of different metrics,such as precision,accuracy,sensitivity,and dice scores.The results of the proposed method are comparable to those of recent existing methodologies,thus proving its effectiveness.展开更多
With the increase in research on AI(Artificial Intelligence),the importance of DL(Deep Learning)in various fields,such as materials,biotechnology,genomes,and new drugs,is increasing significantly,thereby increasing th...With the increase in research on AI(Artificial Intelligence),the importance of DL(Deep Learning)in various fields,such as materials,biotechnology,genomes,and new drugs,is increasing significantly,thereby increasing the number of deep-learning framework users.However,to design a deep neural network,a considerable understanding of the framework is required.To solve this problem,a GUI(Graphical User Interface)-based DNN(Deep Neural Network)design tool is being actively researched and developed.The GUI-based DNN design tool can design DNNs quickly and easily.However,the existing GUI-based DNN design tool has certain limitations such as poor usability,framework dependency,and difficulty encountered in changing GUI components.In this study,a deep learning algorithm that solves the problem of poor usability was developed using a template to increase the accessibility for users.Moreover,the proposed tool was developed to save and share only the necessary parts for quick operation.To solve the framework dependency,we applied ONNX(Open Neural Network Exchange),which is an exchange standard for neural networks,and configured it such that DNNs designed with the existing deep-learning framework can be imported.Finally,to address the difficulty encountered in changing GUI components,we defined and developed the JSON format to quickly respond to version updates.The developed DL neural network designer was validated by running it with KISTI’s supercomputer-based AI Studio.展开更多
基金This research was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)the Soonchunhyang University Research Fund.
文摘White blood cells(WBCs)are a vital part of the immune system that protect the body from different types of bacteria and viruses.Abnormal cell growth destroys the body’s immune system,and computerized methods play a vital role in detecting abnormalities at the initial stage.In this research,a deep learning technique is proposed for the detection of leukemia.The proposed methodology consists of three phases.Phase I uses an open neural network exchange(ONNX)and YOLOv2 to localize WBCs.The localized images are passed to Phase II,in which 3D-segmentation is performed using deeplabv3 as a base network of the pre-trained Xception model.The segmented images are used in Phase III,in which features are extracted using the darknet-53 model and optimized using Bhattacharyya separately criteria to classify WBCs.The proposed methodology is validated on three publically available benchmark datasets,namely ALL-IDB1,ALL-IDB2,and LISC,in terms of different metrics,such as precision,accuracy,sensitivity,and dice scores.The results of the proposed method are comparable to those of recent existing methodologies,thus proving its effectiveness.
基金This research was supported by the KISTI Program(No.K-20-L02-C05-S01)the EDISON Program through the National Research Foundation of Korea(NRF)(No.NRF-2011-0020576).A grant was also awarded by the Ministry of Science and ICT(MSIT)under the Program for Returners for R&D.
文摘With the increase in research on AI(Artificial Intelligence),the importance of DL(Deep Learning)in various fields,such as materials,biotechnology,genomes,and new drugs,is increasing significantly,thereby increasing the number of deep-learning framework users.However,to design a deep neural network,a considerable understanding of the framework is required.To solve this problem,a GUI(Graphical User Interface)-based DNN(Deep Neural Network)design tool is being actively researched and developed.The GUI-based DNN design tool can design DNNs quickly and easily.However,the existing GUI-based DNN design tool has certain limitations such as poor usability,framework dependency,and difficulty encountered in changing GUI components.In this study,a deep learning algorithm that solves the problem of poor usability was developed using a template to increase the accessibility for users.Moreover,the proposed tool was developed to save and share only the necessary parts for quick operation.To solve the framework dependency,we applied ONNX(Open Neural Network Exchange),which is an exchange standard for neural networks,and configured it such that DNNs designed with the existing deep-learning framework can be imported.Finally,to address the difficulty encountered in changing GUI components,we defined and developed the JSON format to quickly respond to version updates.The developed DL neural network designer was validated by running it with KISTI’s supercomputer-based AI Studio.