期刊文献+
共找到3,578篇文章
< 1 2 179 >
每页显示 20 50 100
Fabricating PdCe/OMS-2 catalysts with boosted low-temperature activity for toluene deep degradation 被引量:1
1
作者 Lin Yue Zhihua Xu +4 位作者 Minghua Hu Mingjiao Tian Mudi Ma Bijie Huang Chi He 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第6期839-849,I0002,共12页
Porous cryptomelane-type octahedral molecular sieve(OMS-2)with mixed Mn valence and abundant lattice oxygen species has attracted much attention in volatile organic compounds(VOC)catalytic elimination.However,complete... Porous cryptomelane-type octahedral molecular sieve(OMS-2)with mixed Mn valence and abundant lattice oxygen species has attracted much attention in volatile organic compounds(VOC)catalytic elimination.However,complete conversion of arene over OMS-2 catalysts at relatively low temperature is still a challenge due to its limited crystal structure and inferior stability.Here,a series of PdCe/OMS-2 catalysts with different Pd/Ce molar ratios was fabricated by a facile impregnation method and the physicochemical properties of which were extensively characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HR-TEM),B runauer-Emmett-Teller(BET)method,X-ray fluorescence(XRF),X-ray photoelectron spectroscopy(XPS),temperature programmed reduction of H2(H2-TPR),Raman,In situ diffused reflectance infrared Fourier transform spectra(DRIFTS),and density functional theory(DFT)calculations.Results show that the total conversion of toluene can be achieved at 207℃ over PdCe2 with apparent activation energy as low as 62.6 kJ/mol.The strong synergistic effect between Pd and Ce remarkably boosts the catalytic activity of OMS-2,attributed to the abundant Mn^(3+)-O bands and active surface oxygen species.DFT results reveal that oxygen vacancy can be formed over PdCe2 much easily than that of Pd/OMS-2 and Ce/OMS-2 with the oxygen vacancy formation energy of2.42,2.83 and 2.68 eV,respectively.Simply increasing the Pd content cannot promote the catalytic activity although PdO is a critical active center in toluene oxidation.Oxygen vacancy attributed to the integrative effect of Pd,Ce and Mn species plays a promine nt role over prepared catalysts in toluene activation process.The findings reported in this work showed new insights into the designing of highly efficient OMS-2catalysts for VOC deep oxidation by tuning oxygen vacancy concentration. 展开更多
关键词 PdCe/oms-2 TOLUENE Catalytic oxidation Oxygen vacancy Rare earths
原文传递
OMS-2活化过硫酸盐降解有机污染物
2
作者 沈悦 曹鸿健 +2 位作者 刘晓恬 廖用开 蔡超 《中国环境科学》 北大核心 2025年第4期1939-1950,共12页
以过硫酸钾和乙酸锰为原料,采用固相法制备了氧化锰八面体分子筛(OMS-2_(PS)),采用X射线衍射仪(XRD),傅里叶变换红外光谱仪(FT-IR),X射线光电子能谱仪(XPS)等手段对OMS-2_(PS)进行表征,考察了OMS-2_(PS)活化过硫酸盐(PS)降解有机污染物... 以过硫酸钾和乙酸锰为原料,采用固相法制备了氧化锰八面体分子筛(OMS-2_(PS)),采用X射线衍射仪(XRD),傅里叶变换红外光谱仪(FT-IR),X射线光电子能谱仪(XPS)等手段对OMS-2_(PS)进行表征,考察了OMS-2_(PS)活化过硫酸盐(PS)降解有机污染物的性能,研究了催化剂投加量,PS浓度和初始pH值等反应条件对目标污染物去除效果的影响,探究了OMS-2_(PS)活化PS的作用机制.结果表明,采用固相法成功制备出OMS-2_(PS),且呈纳米棒状结构.OMS-2_(PS)可有效活化PS降解水中有机污染物,当酸性橙7(AO7)浓度为50mg/L,催化剂投加量为1.0g/L,PS浓度为2.0mmol/L时,60min内AO7的去除率和矿化率分别为97.4%和50.1%.离子共存实验结果表明,Cl^(-),NO_(3)^(-)和CO_(3)^(2-)对AO7的去除具有显著的抑制作用,而HA对AO7的去除几乎没有影响.自由基淬灭实验和电子顺磁共振(EPR)分析结果表明,OMS-2_(PS)/PS体系中主要活性物种为·OH和SO_(4)^(·-),且其中·OH对AO7的去除起主导作用.XPS分析结果表明,OMS-2_(PS)表面的Mn(Ⅳ)和晶格氧是活化PS的主要活性位点.结合实验结果,分析OMS-2_(PS)活化PS的机制可能是PS先通过OMS-2_(PS)表面-OH和OMS-2_(PS)结合,进而PS与OMS-2_(PS)表面的活性位点反应产生活性物种.此外,将OMS-2_(PS)/PS体系用于不同水体及其他有机污染物(双酚A,萘,四环素)的降解,也展现出良好的降解效果,表明该体系在环境污染治理领域具有广阔的应用前景. 展开更多
关键词 oms-2 催化活化 过硫酸盐 有机污染物
在线阅读 下载PDF
K-OMS-2/g-C_(3)N_(4)复合材料光催化还原CO_(2)
3
作者 廖浩宏 邹伟欣 董林 《环境化学》 北大核心 2025年第9期2365-2372,共8页
为了解决大气中二氧化碳(CO_(2))含量的急剧增长带来日益突出的环境问题,利用半导体光催化技术实现二氧化碳的转化是一种更为环境友好的途径.本工作制备了K-OMS-2/g-C_(3)N_(4)复合光催化剂并首次应用于光催化CO_(2)还原反应.通过水热... 为了解决大气中二氧化碳(CO_(2))含量的急剧增长带来日益突出的环境问题,利用半导体光催化技术实现二氧化碳的转化是一种更为环境友好的途径.本工作制备了K-OMS-2/g-C_(3)N_(4)复合光催化剂并首次应用于光催化CO_(2)还原反应.通过水热法成功实现了棒状K-OMS-2在片层状g-C_(3)N_(4)上的原位生成,其具有更高的低价锰比例及更丰富的表面羟基氧物种,同时在光催化CO_(2)还原反应中的性能明显提升.通过分析能带结构,推测Z型异质结的形成,有利于光照下光生载流子的高效分离,产生的光电子还原CO_(2)转化为燃料,本工作为温室气体CO_(2)的资源化利用提供新思路. 展开更多
关键词 光催化 CO_(2) 还原 oms-2 g-C_(3)N_(4) 异质结 反应机理
原文传递
Exploring catalyst developments in heterogeneous CO_(2) hydrogenation to methanol and ethanol:A journey through reaction pathways 被引量:1
4
作者 Rasoul Salami Yimin Zeng +2 位作者 Xue Han Sohrab Rohani Ying Zheng 《Journal of Energy Chemistry》 2025年第2期345-384,I0008,共41页
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation... The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts. 展开更多
关键词 CO_(2)hydrogenation METHANOL ETHANOL Catalytic mechanism Operando techniques Single atom catalyst Tandem catalyst
在线阅读 下载PDF
Research progress on metal-support interactions over Ni-based catalysts for CH_(4)-CO_(2)reforming reaction
5
作者 SUN Kai JIANG Jianfei +4 位作者 LIU Zixuan GENG Shiqi LIU Zhenmin YANG Jiaqian LI Shasha 《燃料化学学报(中英文)》 北大核心 2025年第4期434-451,共18页
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni... With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies. 展开更多
关键词 CO_(2)utilization CH_(4)-CO_(2)reforming Ni-based catalysts metal-support interactions supports
在线阅读 下载PDF
High temperature shock synthesis of Ni-N-C single-atom catalysts for efficient CO_(2) electroreduction to CO
6
作者 PANG Peiqi XU Changjian +5 位作者 LI Ruizhu GAO Na DU Xianlong LI Tao WANG Jianqiang XIAO Guoping 《燃料化学学报(中英文)》 北大核心 2025年第8期1162-1172,共11页
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re... Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment. 展开更多
关键词 CO_(2)electrocatalytic reduction high temperature shock method single atom catalysts coordination
在线阅读 下载PDF
Peroxymonosulfate Activation by CoFe_(2)O_(4)/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic
7
作者 LI Jianjun CHEN Fangming +5 位作者 ZHANG Lili WANG Lei ZHANG Liting CHEN Huiwen XUE Changguo XU Liangji 《无机材料学报》 北大核心 2025年第4期440-448,I0022-I0024,共12页
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d... Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation. 展开更多
关键词 magnetic composite catalyst PEROXYMONOSULFATE CoFe_(2)O_(4)/MgAl-LDH advanced oxidation process antibiotic
在线阅读 下载PDF
100%Conversion of CO_(2)-CH_(4)with Non‑Precious Co@ZnO Catalyst in Hot Water
8
作者 Yang Yang Xu Liu +1 位作者 Daoping He Fangming Jin 《Nano-Micro Letters》 2025年第9期251-264,共14页
The combination of solar energy and natural hydro-thermal systems will innovate the chemistry ofCO_(2)hydrogenation;however,the approach remains challenging due to the lack of robust and cost-effective catalytic syste... The combination of solar energy and natural hydro-thermal systems will innovate the chemistry ofCO_(2)hydrogenation;however,the approach remains challenging due to the lack of robust and cost-effective catalytic system.Here,Zn which can be recycled with solar energy-induced approach was chosen as the reductant and Co as catalyst to achieve robust hydrothermalCO_(2)methanation.Nanosheets of honeycomb ZnO were grown in situ on the Co surface,resulting in a new motif(Co@ZnO catalyst)that inhibits Co deacti-vation through ZnO-assistedCoOx reduction.The stabilized Co and interaction between Co and ZnO functioned collaboratively toward the full conversion ofCO_(2)–CH_(4).In situ hydrothermal infrared spectros-copy confirmed the formation of formic acid as an intermediate,thereby avoiding CO formation and unwanted side reaction pathways.This study presents a straightforward one-step process for both highly efficientCO_(2)conversion and catalyst synthesis,paving the way for solar-drivenCO_(2)methanation. 展开更多
关键词 CO_(2)methanation Cobalt catalyst HYDROTHERMAL Formic acid Co@ZnO catalyst
在线阅读 下载PDF
Size-dependent strong metal-support interaction modulation of Pt/CoFe_(2)O_(4) catalysts
9
作者 Yangyang Li Jingyi Yang +1 位作者 Botao Qiao Tao Zhang 《Chinese Journal of Catalysis》 2025年第2期292-302,共11页
Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance... Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance of supported metal catalysts.This is particularly true for single-atom catalysts(SACs)and pseudo-single-atom catalysts(pseudo-SACs),where all metal atoms are dispersed on,and interact directly with the support.Consequently,the MSI of SACs and pseudo-SACs are theoretically more sensitive to modulation compared to that of traditional nanoparticle catalysts.In this work,we experimentally demonstrated this hypothesis by an observed size-dependent MSI modulation.We fabricated CoFe_(2)O_(4) supported Pt pseudo-SACs and nanoparticle catalysts,followed by a straightforward water treatment process.It was found that the covalent strong metal-support interaction(CMSI)in pseudo-SACs can be weakened,leading to a significant activity improvement in methane combustion reaction.This finding aligns with our recent observation of CoFe_(2)O_(4) supported Pt SACs.By contrast,the MSI in Pt nanoparticle catalyst was barely affected by the water treatment,giving rise to almost unchanged catalytic performance.This work highlights the critical role of metal size in determining the MSI modulation,offering a novel strategy for tuning the catalytic performance of SACs and pseudo-SACs by fine-tuning their MSIs. 展开更多
关键词 Strongmetal-support interaction Single-atom catalyst Pseudo-single-atom catalyst Size dependence Pt/CoFe_(2)O_(4)catalyst
在线阅读 下载PDF
Enhancing CO_(2) reduction with formamide-Ni@TiO_(2) catalyst
10
作者 Wen Zhong Wenjing Liu Jingjing Du 《Journal of Environmental Sciences》 2025年第7期229-236,共8页
Formamide condensation with Ni can generate the N–C structure,widely recognized as an efficient catalyst for electrocatalytic CO_(2) reduction reaction(CO_(2)RR).To improve the utilization efficiency of Ni atoms,we i... Formamide condensation with Ni can generate the N–C structure,widely recognized as an efficient catalyst for electrocatalytic CO_(2) reduction reaction(CO_(2)RR).To improve the utilization efficiency of Ni atoms,we introduced metal oxides as substrates to modulate the growth of a formamide-Ni(FA-Ni)condensate.FA-Ni@TiO_(2) demonstrated 2.8 times higher partial CO current density and Ni turnover frequency than FA-Ni,which were also higher than those of other FA-Ni@metal oxides,including ZrO_(2),Al_(2)O_(3),Fe_(2)O_(3),and ZnO.The improved performance of CO_(2)RR can be attributed to the Ni content exposed on FA-Ni@TiO_(2) being twice that of the raw FA-Ni condensate.The Fourier transform infrared results suggested that formamide was adsorbed on TiO_(2) via the-CHO group,exposing-NH_(2) for potential interaction with Ni.As a result,Ni atoms were predispersed on the TiO_(2) surface.By contrast,the dispersion of Ni atoms was not enhanced by other metal oxides,such as Al_(2)O_(3),Fe_(2)O_(3),and ZnO,owing to the robust acidity of their surface sites.These metal oxides adsorbed formamide via-NH_(2),leading to the absence of extra-NH_(2) available for binding to Ni atoms.This study provides new insights into the development of appropriate substrates for single-atom catalysts. 展开更多
关键词 Metal oxides TiO_(2) Single-atom catalysts FORMAMIDE CONDENSATION
原文传递
Integrated CO_(2)capture and electrochemical reduction:From mechanism understanding to gas diffusion electrode and catalyst design
11
作者 Xinyu Zhang Ming Sun +3 位作者 Yao Wang Hanya Zhang Juan Du Aibing Chen 《Journal of Energy Chemistry》 2025年第7期81-100,共20页
Integrating the CO_(2)capture process with the CO_(2)electrochemical reduction process into a single system can eliminate the need for storage and transportation following CO_(2)capture.This integrated process offers ... Integrating the CO_(2)capture process with the CO_(2)electrochemical reduction process into a single system can eliminate the need for storage and transportation following CO_(2)capture.This integrated process offers several advantages over multi-step cascade processes,including reduced costs and enhanced CO_(2)utilization.However,the integrated CO_(2)capture and electrochemical reduction(CCER)process encounters several challenges,including the low CO_(2)adsorption performance of the gas diffusion electrode(GDE)and catalyst,as well as the poor activity and selectivity of the catalyst for the electrochemical reduction of CO_(2).This review aims to systematically summarize the fundamentals of the CCER process.Based on an in-depth understanding of the CO_(2)mass transfer,adsorption,and electrochemical reduction processes,GDE design strategies based on the modulation of wettability and structure are discussed to enhance the CO_(2)capture capability at the GDE level.At the catalyst level,catalyst design strategies based on the introduction of CO_(2)capture sites and the construction of CO_(2)mass transfer channels were analyzed,and catalyst design strategies for enhanced CO_(2)capture were proposed.This review summarizes the most common catalysts for CO_(2)electrochemical reduction,such as Ni-based,Bi-based,and Cubased catalysts,and analyzes their design strategies based on reaction pathways for generating specific products.Finally,the problems and challenges of the CCER process are summarized and proposed,which provide ideas for the further application of this technology in the future. 展开更多
关键词 CO_(2)capture Electrochemical reduction Gasdiffusion electrode catalyst Application
在线阅读 下载PDF
Constant-potential simulation of electrocatalytic N_(2) reduction over atomic metal-N-graphene catalysts
12
作者 Sanmei Wang Yong Zhou +3 位作者 Hengxin Fang Chunyang Nie Chang Q Sun Biao Wang 《Chinese Chemical Letters》 2025年第3期439-443,共5页
Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required... Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required for NRR by the CNM methods and those observed experimentally,as the CNM method neglects the charge effect from the electrode potential.To address this issue,we employed the constant electrode potential(CEP)method to screen atomic transition metal-N-graphene(M_(1)/N-graphene)as NRR electrocatalysts and systematically investigated the underlying catalytic mechanism.Among eight types of M_(1)/N-graphene(M_(1)=Mo,W,Fe,Re,Ni,Co,V,Cr),W_(1)/N-graphene emerges as the most promising NRR electrocatalyst with a limiting potential as low as−0.13 V.Additionally,the W_(1)/N-graphene system consistently maintains a positive charge during the reaction due to its Fermi level being higher than that of the electrode.These results better match with the actual circumstances compared to those calculated by conventional CNM method.Thus,our work not only develops a promising electrocatalyst for NRR but also deepens the understanding of the intrinsic electrocatalytic mechanism. 展开更多
关键词 N_(2) reduction Single-atom catalysts Constant potential GRAPHENE DFT
原文传递
Alloy-type Mo single-atom catalyst enhancing hydrogen storage performance of MgH2
13
作者 Cenyu Yang Chen Hu +3 位作者 Xiaoyu Wu Yao Pang Xiaofang Liu Jianglan Shui 《Journal of Energy Chemistry》 2025年第6期185-192,I0005,共9页
Metallic single-atom catalysts(SACs)have demonstrated high activity and potential in enhancing the hydrogen storage properties of MgH_(2).However,previous reports primarily focus on supported SACs,which often suffer f... Metallic single-atom catalysts(SACs)have demonstrated high activity and potential in enhancing the hydrogen storage properties of MgH_(2).However,previous reports primarily focus on supported SACs,which often suffer from insufficient co ntact between single-atom active sites and hydrogen storage materials.In this study,the precursor Mo(CO)_(6)is uniformly dispersed on the surface of MgH_(2)via impregnation adsorption,leading to the formation of alloy-type Mo single atoms after hydrogenation/dehydrogenation activation.This alloy structure enables zero-distance contact between catalytic sites and the hydrogen storage material,facilitating electron exchange and hydrogen transfer between the Mo sites and MgH_(2).The MgH_(2)loaded with Mo single atoms(Mo_(1)-MgH_(2))exhibits excellent hydrogen absorption and desorption properties,with the initial hydrogen release temperature lowered from 323 to 218℃.At 250℃,Mo_(1)-MgH_(2)absorbs over 6.77 wt% of hydrogen within 1 min and releases over 5.85 wt% within 4 h.During 10 cycles of hydrogenation and dehydrogenation reactions,Mo_(1)-MgH_(2)maintains nearly 100% capacity and shows stable kinetics.This work provides new insights into the design and fabrication of catalysts for hydrogen storage materials. 展开更多
关键词 MOLYBDENUM Single-atom alloy catalyst Hydrogen spillover MgH_(2) Hydrogen storage
在线阅读 下载PDF
Catalytic Purification of NO_(x) and PM by Fe-Doped CuCrO_(2) Catalyst Using Two Kinds of Carriers
14
作者 LU Fangzhou WANG Wei WANG Mengxiao 《Journal of Wuhan University of Technology(Materials Science)》 2025年第3期721-727,共7页
Fe-doped CuCrO_(2) catalyst CuCr_(1-x)Fe_xO_(2) series were prepared by the sol-gel method with different Fe contents.The structure and properties of the catalysts were investigated by XRD(X-ray diffraction),SEM(scann... Fe-doped CuCrO_(2) catalyst CuCr_(1-x)Fe_xO_(2) series were prepared by the sol-gel method with different Fe contents.The structure and properties of the catalysts were investigated by XRD(X-ray diffraction),SEM(scanning electron microscope),and XPS(X-ray photoelectron spectroscopy)and the purification effect on NO_(x) and PM was measured through simulated emission experiments.The results indicate that CuCrO_(2) catalyst has good catalytic activity,the maximum NO_(x) conversion rate can be up to 28.15%,and the ignition temperature of PM can be reduced to 285℃.When the molecular ratio of Cr:Fe=9:1,the catalyst can achieve better catalytic effect,the maximum NO_(x) conversion rate will be up to 30.25%and the PM ignition temperature can be reduced to 280℃.In addition,the catalytic activity of catalyst supported on different carriers was also studied.The results show that catalyst on SiC foam ceramic carrier has better catalytic activity than that on cordierite honeycomb ceramic carrier.The maximum NO_(x) conversion of CuCrO_(2) and CuCr_(0.9)Fe_(0.1)O_(2) can be increased by 0.72%and 1.33%respectively,and the PM ignition temperature can be further reduced by 15 and 5℃respectively. 展开更多
关键词 Fe-doped CuCrO_(2)catalyst NO_(x) PM PURIFICATION carrier
原文传递
Enhanced and selective photocatalytic reduction of CO_(2)to CH_(4)using a Pt-loaded CuPc/g-C_(3)N_(4)Z-scheme heterojunction catalyst
15
作者 Jinshan Chen Jiangfeng Lu +5 位作者 Ran Lang Chi Wang Shuangyou Bao Yuan Li Kai Li Maohong Fan 《Green Energy & Environment》 2025年第6期1348-1358,共11页
In this study,a novel Pt-loaded Cu Pc/g-C_(3)N_(4)(Pt Cu CN)composite was synthesized for the selective photocatalytic reduction of CO_(2)to CH_(4)under visible light.The Pt Cu CN catalyst achieved a CH_(4)yield of 3... In this study,a novel Pt-loaded Cu Pc/g-C_(3)N_(4)(Pt Cu CN)composite was synthesized for the selective photocatalytic reduction of CO_(2)to CH_(4)under visible light.The Pt Cu CN catalyst achieved a CH_(4)yield of 39.8μmol g^(-1)h^(-1),significantly outperforming bulk g-C_(3)N_(4)and Cu Pc alone by factors of 2.5 and 3.1,respectively,with a high selectivity of 90%.In comparison with other commonly studied photocatalysts,such as g-C_(3)N_(4)-based catalysts,the Pt Cu CN composite exhibited superior CH_(4)yield and product selectivity,demonstrating its potential as a more efficient photocatalyst for CO_(2)reduction.X-ray photoelectron spectroscopy(XPS),density functional theory(DFT)calculations,and in-situ infrared(IR)analysis revealed that the Pt^(0)species effectively lower the activation energy for CH_(4)formation,while Cu Pc extends the light absorption range and enhances charge separation.The combined effects of these components in a Z-scheme heterojunction provide new insights into designing highly selective CO_(2)-to-CH_(4)photocatalysts.This work demonstrates the potential of Pt Cu CN as a highly efficient and stable catalyst for CO_(2)reduction to CH_(4)under visible light. 展开更多
关键词 Photocatalysis CO_(2)reduction Methane production Pt-loaded catalyst Z-scheme heterojunction
在线阅读 下载PDF
Atomic cerium-doped CuO_(x) catalysts for efficient electrocatalytic CO_(2) reduction to CH_(4)
16
作者 Xiangyu Chen Aihao Xu +4 位作者 Dong Wei Fang Huang Junjie Ma Huibing He Jing Xu 《Chinese Chemical Letters》 2025年第1期326-331,共6页
Copper(Cu)is widely used in the electrochemical carbon dioxide reduction reaction(ECO_(2)RR)for efficient methane(CH_(4))product.However,the morphology and valence of Cu-based catalysts are usually unstable under reac... Copper(Cu)is widely used in the electrochemical carbon dioxide reduction reaction(ECO_(2)RR)for efficient methane(CH_(4))product.However,the morphology and valence of Cu-based catalysts are usually unstable under reaction conditions.In this work,we prepared Ce-doped MOF-199 precursor(Ce/HKUST-1)and further obtained nanoparticle electrocatalyst Ce/CuO_(x)-NPs by cyclic voltammetry(CV)pretreatment.The Faradic efficiency of methane(FE_(CH_(4)))maintains above 62%within a broad potential window of 350 mV and the maximum FE_(CH_(4))reaches 67.4%with a partial current density of 293 mA/cm^(2)at-1.6 V vs.a reversible hydrogen electrode.Catalyst characterization and theoretical calculations revealed that the unique electronic structure and large ionic radius of Cerium(Ce)not only promoted the generation of key intermediate*CO but also lowered energy barrier of the*CO to*CHO step.This study provides a novel and efficient catalyst for methane production in ECO_(2)RR and offers profound insights into constructing high performance Cu-based catalysts. 展开更多
关键词 ECO_(2)RR Cu-based catalyst Structure evolution DFT calculation
原文传递
Transition metal-based cathode catalysts for Li-CO_(2)batteries
17
作者 Wenqing Ma Mingjuan Gao +5 位作者 Jianping Ma Siyu Liu Lishan Yang Yahui Yang Xiangping Chen Tianzhen Jian 《Journal of Energy Chemistry》 2025年第5期225-253,共29页
The Li-CO_(2)battery has been highly rated as an intriguing technique for balancing the carbon cycle for years,but it is still significantly challenged by the obstacles such as limited reversibility,sluggish kinetics,... The Li-CO_(2)battery has been highly rated as an intriguing technique for balancing the carbon cycle for years,but it is still significantly challenged by the obstacles such as limited reversibility,sluggish kinetics,and poor energy efficiency.Hence,the design and development of advance catalysts that can enhance the kinetics and reversibility of the CO_(2)electrochemical cycling reactions are considered the imperative tasks.Transition metal-based catalysts are widely considered appealing owing to their unfilled dorbitals,rich and adjustable valences,as well as processibility.In this review,the working mechanism and the key issues of the CO_(2)electrochemical cycling reaction are discussed first.Then the strategies for composition and structure design of different type of transition metal-based catalysts are highlighted,including their benefits,limitations,and the ways to implement these strategies.Finally,based on the pioneering research,the perspectives on the challenges and key points for the future development of cathode catalyst are proposed. 展开更多
关键词 Li-CO_(2)battery Transition metal Cathode catalyst Catalytic mechanism
在线阅读 下载PDF
Synergistic interface engineering in Cu-Zn-Ce catalysts for efficient CO_(2) hydrogenation to methanol
18
作者 Yang Chen Diwen Zhou +10 位作者 Yongli Chang Hongqiao Lin Yunzhao Xu Yong Zhang Ding Yuan Lizhi Wu Yu Tang Chengyi Dai Xingang Li Qinhong Wei Li Tan 《Chinese Journal of Catalysis》 2025年第10期171-183,共13页
CO_(2) hydrogenation to CH3OH is of great significance for achieving carbon neutrality.Here,we show a urea-assisted grinding strategy for synthesizing Cu-Zn-Ce ternary catalysts(CZC-G)with optimized interfacial synerg... CO_(2) hydrogenation to CH3OH is of great significance for achieving carbon neutrality.Here,we show a urea-assisted grinding strategy for synthesizing Cu-Zn-Ce ternary catalysts(CZC-G)with optimized interfacial synergy,achieving superior performance in CO_(2) hydrogenation to methanol.The CZC-G catalyst demonstrated exceptional methanol selectivity(96.8%)and a space-time yield of 73.6 gMeOH·kgcat^(–1)·h^(–1) under optimized conditions.Long-term stability tests confirmed no obvious deactivation over 100 h of continuous operation.Structural and mechanistic analyses revealed that the urea-assisted grinding method promotes the formation of Cu/Zn-O_(v)-Ce ternary interfaces and inhibits the reduction of ZnO,enabling synergistic interactions for efficient CO_(2) activation and selective stabilization of formate intermediates(HCOO^(*)),which are critical for methanol synthesis.In-situ diffuse reflectance infrared Fourier transform spectra and X-ray absorption spectroscopy studies elucidated the reaction pathway dominated by the formate mechanism,while suppressing the reverse water-gas shift reaction.This work underscores the critical role of synthetic methodologies in engineering interfacial structures,offering a strategy for designing high-performance catalysts for sustainable CO_(2) resource utilization. 展开更多
关键词 CO_(2)hydrogenation METHANOL Cu-based catalyst Ternary interface Formate mechanism
在线阅读 下载PDF
Engineering the coordination of Cu–Ni dual-atom catalysts to enhance the electrochemical CO_(2)overall splitting
19
作者 Yuan Zhuang Kaixuan Wei +8 位作者 Zhenxing Li Hanzhang Gong Jianan Deng Haozhong Yuan Haoyu Lian Hao Zheng Honghao Zhao Xiao Zhang Jian Liu 《Journal of Energy Chemistry》 2025年第4期333-343,共11页
Designing the coordination environment of heteroatoms around metal sites and optimizing the electronic structure of diatomic metal sites remain significant challenges in achieving efficient CO_(2)overall splitting.Her... Designing the coordination environment of heteroatoms around metal sites and optimizing the electronic structure of diatomic metal sites remain significant challenges in achieving efficient CO_(2)overall splitting.Herein,we report four configurations(Cu/Ni-N_(4)C_(2),Cu/Ni-N_(2)C_(4),Cu/Ni-N_(2)C_(3)and Cu/Ni-N_(2)C_(2))constructed by precise regulation of the coordination environment around bimetallic atoms.Cu/Ni-N_(2)C_(2)showed high performance in electrochemical CO_(2)reduction(ECR)and water oxidation evolution reaction(OER).In the electrochemical CO_(2)overall splitting reaction,it achieved a Faraday efficiency of CO(FECO)of98.0%at a low cell voltage of-2.9 V,significantly higher than widely reported values.Moreover,the FE_(CO)is above 90%over-2.7 to-4.1 V of cell voltages.Cu/Ni-N_(2)C_(2)achieved long-term ECR stability of 110 h at-100 mA cm^(-2).Mechanism studies revealed that the change of coordination environment around the diatomic pairs moves the d-band center of the Ni atom closer to the Fermi level,thereby modulating the adsorption capacity of the catalysts to the reaction intermediates^(*)COOH and^(*)O.This work presents valuable insights into the rational design of diatomic catalysts and elucidates the intricate structureperformance relationship in advancing electrochemical CO_(2)overall splitting technology and energyconversion applications. 展开更多
关键词 CO_(2)reduction Dual-atom catalysts ELECTROCHEMISTRY Overall CO_(2)splitting Structure-activity relationships Energy conversion
在线阅读 下载PDF
Electrochemical CO_(2)RR to C^(2+)products:A vision of dynamic surfaces of Cu-based catalysts
20
作者 Jinxin Wang Jiaqi Zhang Chen Chen 《Chinese Journal of Catalysis》 2025年第1期83-102,共20页
Electrochemical reduction of CO_(2)(CO_(2)RR)to form high-energy-density and high-value-added multicarbon products has attracted much attention.Selective reduction of CO_(2)to C^(2+)products face the problems of low r... Electrochemical reduction of CO_(2)(CO_(2)RR)to form high-energy-density and high-value-added multicarbon products has attracted much attention.Selective reduction of CO_(2)to C^(2+)products face the problems of low reaction rate,complex mechanism and low selectivity.Currently,except for a few examples,copper-based catalysts are the only option capable of achieving efficient generation of C^(2+)products.However,the continuous dynamic reconstruction of the catalyst causes great difficulty in understanding the structure-performance relationship of CO_(2)RR.In this review,we first discuss the mechanism of C^(2+)product generation.The structural factors promoting C^(2+)product generation are outlined,and the dynamic evolution of these structural factors is discussed.Furthermore,the effects of electrolyte and electrolysis conditions are reviewed in a vision of dynamic surface.Finally,further exploration of the reconstruction mechanism of Cu-based catalysts and the application of emerging robotic AI chemists are discussed. 展开更多
关键词 ELECTROCATALYSIS CO_(2)RR Cu-based catalyst RECONSTRUCTION Multicarbon product Structural evolution
在线阅读 下载PDF
上一页 1 2 179 下一页 到第
使用帮助 返回顶部