以军团菌DNA为模板,PCR扩增获得军团菌主要外膜蛋白基因(M a jor ou ter m em brane prote in gene,om pS),与原核表达质粒pUC 18定向重组,构建重组质粒,转化大肠杆菌BL 21,并用限制性酶酶切分析、聚合酶链式反应、核酸序列分析、十二...以军团菌DNA为模板,PCR扩增获得军团菌主要外膜蛋白基因(M a jor ou ter m em brane prote in gene,om pS),与原核表达质粒pUC 18定向重组,构建重组质粒,转化大肠杆菌BL 21,并用限制性酶酶切分析、聚合酶链式反应、核酸序列分析、十二烷基磺酸钠-聚丙烯酰胺凝胶电泳、W estern印迹进行鉴定。实验结果表明我们扩增出了军团菌914 bp的om pS基因,成功构建了重组质粒pLPom pS,并在原核系统中得到了表达。展开更多
Two statistical validation methods were used to evaluate the confidence level of the Total Column Ozone (TCO) measurements recorded by satellite systems measuring simultaneously, one using the normal distribution and ...Two statistical validation methods were used to evaluate the confidence level of the Total Column Ozone (TCO) measurements recorded by satellite systems measuring simultaneously, one using the normal distribution and another using the Mann-Whitney test. First, the reliability of the TCO measurements was studied hemispherically. While similar coincidences and levels of significance > 0.05 were found with the two statistical tests, an enormous variability in the levels of significance throughout the year was also exposed. Then, using the same statistical comparison methods, a latitudinal study was carried out in order to elucidate the geographical distribution that gave rise to this variability. Our study reveals that between the TOMS and OMI measurements in 2005 there was only a coincidence in 50% of the latitudes, which explained the variability. This implies that for 2005, the TOMS measurements are not completely reliable, except between the -50° and -15° latitude band in the southern hemisphere and between +15° and +50° latitude band in the northern hemisphere. In the case of OMI-OMPS, we observe that between 2011 and 2016 the measurements of both satellite systems are reasonably similar with a confidence level higher than 95%. However, in 2017 a band with a width of 20° latitude centered on the equator appeared, in which the significance levels were much less than 0.05, indicating that one of the measurement systems had begun to fail. In 2018, the fault was not only located in the equator, but was also replicated in various bands in the Southern Hemisphere. We interpret this as evidence of irreversible failure in one of the measurement systems.展开更多
A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and ...A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and it can detect focused space targets more flexibly than the monostatic radar system or the ground-based radar system.However,the target echo signal is more difficult to process due to the high-speed motion of both space-based radars and space targets.To be specific,it will encounter the problems of Range Cell Migration(RCM)and Doppler Frequency Migration(DFM),which degrade the long-time coherent integration performance for target detection and localization inevitably.To solve this problem,a novel target detection method based on an improved Gram Schmidt(GS)-orthogonalization Orthogonal Matching Pursuit(OMP)algorithm is proposed in this paper.First,the echo model for bistatic space-based radar is constructed and the conditions for RCM and DFM are analyzed.Then,the proposed GS-orthogonalization OMP method is applied to estimate the equivalent motion parameters of space targets.Thereafter,the RCM and DFM are corrected by the compensation function correlated with the estimated motion parameters.Finally,coherent integration can be achieved by performing the Fast Fourier Transform(FFT)operation along the slow time direction on compensated echo signal.Numerical simulations and real raw data results validate that the proposed GS-orthogonalization OMP algorithm achieves better motion parameter estimation performance and higher detection probability for space targets detection.展开更多
In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of t...In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp.展开更多
In this paper,in order to reduce the energy leakage caused by the discretized representation in sparse channel estimation for Orthogonal Frequency Division Multiplexing(OFDM)systems,we systematically have analyzed the...In this paper,in order to reduce the energy leakage caused by the discretized representation in sparse channel estimation for Orthogonal Frequency Division Multiplexing(OFDM)systems,we systematically have analyzed the optimal locations of atoms with discrete delays for each path reconstruction from the perspective of linear fitting theory.Then,we have investigated the adverse effects of the non-ideal inner product function on the iteration in one of the most widely used channel estimation method,Orthogonal Matching Pursuit(OMP).The study shows that the distance between the selected atoms for each path in OMP can be larger than the sampling interval,which prevents OMP-based methods from achieving better performance.To overcome this drawback,the image deblurring-based channel estimation method,in which the channel estimation problem is analogized to one-dimensional image deblurring,was proposed to improve the large compensation distance of traditional OMP.The advantage of the proposed method was validated by the results of numerical simulation and sea trial data decoding.展开更多
文摘以军团菌DNA为模板,PCR扩增获得军团菌主要外膜蛋白基因(M a jor ou ter m em brane prote in gene,om pS),与原核表达质粒pUC 18定向重组,构建重组质粒,转化大肠杆菌BL 21,并用限制性酶酶切分析、聚合酶链式反应、核酸序列分析、十二烷基磺酸钠-聚丙烯酰胺凝胶电泳、W estern印迹进行鉴定。实验结果表明我们扩增出了军团菌914 bp的om pS基因,成功构建了重组质粒pLPom pS,并在原核系统中得到了表达。
文摘Two statistical validation methods were used to evaluate the confidence level of the Total Column Ozone (TCO) measurements recorded by satellite systems measuring simultaneously, one using the normal distribution and another using the Mann-Whitney test. First, the reliability of the TCO measurements was studied hemispherically. While similar coincidences and levels of significance > 0.05 were found with the two statistical tests, an enormous variability in the levels of significance throughout the year was also exposed. Then, using the same statistical comparison methods, a latitudinal study was carried out in order to elucidate the geographical distribution that gave rise to this variability. Our study reveals that between the TOMS and OMI measurements in 2005 there was only a coincidence in 50% of the latitudes, which explained the variability. This implies that for 2005, the TOMS measurements are not completely reliable, except between the -50° and -15° latitude band in the southern hemisphere and between +15° and +50° latitude band in the northern hemisphere. In the case of OMI-OMPS, we observe that between 2011 and 2016 the measurements of both satellite systems are reasonably similar with a confidence level higher than 95%. However, in 2017 a band with a width of 20° latitude centered on the equator appeared, in which the significance levels were much less than 0.05, indicating that one of the measurement systems had begun to fail. In 2018, the fault was not only located in the equator, but was also replicated in various bands in the Southern Hemisphere. We interpret this as evidence of irreversible failure in one of the measurement systems.
文摘A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and it can detect focused space targets more flexibly than the monostatic radar system or the ground-based radar system.However,the target echo signal is more difficult to process due to the high-speed motion of both space-based radars and space targets.To be specific,it will encounter the problems of Range Cell Migration(RCM)and Doppler Frequency Migration(DFM),which degrade the long-time coherent integration performance for target detection and localization inevitably.To solve this problem,a novel target detection method based on an improved Gram Schmidt(GS)-orthogonalization Orthogonal Matching Pursuit(OMP)algorithm is proposed in this paper.First,the echo model for bistatic space-based radar is constructed and the conditions for RCM and DFM are analyzed.Then,the proposed GS-orthogonalization OMP method is applied to estimate the equivalent motion parameters of space targets.Thereafter,the RCM and DFM are corrected by the compensation function correlated with the estimated motion parameters.Finally,coherent integration can be achieved by performing the Fast Fourier Transform(FFT)operation along the slow time direction on compensated echo signal.Numerical simulations and real raw data results validate that the proposed GS-orthogonalization OMP algorithm achieves better motion parameter estimation performance and higher detection probability for space targets detection.
基金supported by Natural Science Foundation of China(62071262)the K.C.Wong Magna Fund at Ningbo University.
文摘In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp.
基金supported by the Fundamental Research Funds for the Central Universities under Grant 20720200092the National Natural Science Foundation of China under Grant 62171394,U21A20444,61771152,62071402+2 种基金the Sustainable Funding of the Key Laboratory of Underwater Acoustic Technology under Grant JCKYS2022604SSJS001Key Laboratory of Universal Wireless Communications(BUPT)Ministry of Education,P.R.China under Grant KFKT-2022103.
文摘In this paper,in order to reduce the energy leakage caused by the discretized representation in sparse channel estimation for Orthogonal Frequency Division Multiplexing(OFDM)systems,we systematically have analyzed the optimal locations of atoms with discrete delays for each path reconstruction from the perspective of linear fitting theory.Then,we have investigated the adverse effects of the non-ideal inner product function on the iteration in one of the most widely used channel estimation method,Orthogonal Matching Pursuit(OMP).The study shows that the distance between the selected atoms for each path in OMP can be larger than the sampling interval,which prevents OMP-based methods from achieving better performance.To overcome this drawback,the image deblurring-based channel estimation method,in which the channel estimation problem is analogized to one-dimensional image deblurring,was proposed to improve the large compensation distance of traditional OMP.The advantage of the proposed method was validated by the results of numerical simulation and sea trial data decoding.