Oxidative stress has been strongly related with Parkinson disease (PD) and Alzheimer disease pathogenesis. We determined the effects of Lactococcus lactis (LAL) supplementation on the generated loss-of-function mutant...Oxidative stress has been strongly related with Parkinson disease (PD) and Alzheimer disease pathogenesis. We determined the effects of Lactococcus lactis (LAL) supplementation on the generated loss-of-function mutants of PINK1 B9, an AR-JP-linked gene and Aβ42 induced phenotypes in a Drosophila melanogaster model of PD/AD. Enhanced mutant PINK1 B9 and Aβ42 expression in D. melanogaster dopaminergic (DA) neurons can curtail lifespan, flight muscle accompanied by locomotive defects and we have observed longevity methods to assay the effects of LAL on D. melanogaster survival. Furthermore, flies expressing mutant PINK1 B9 and Aβ42 in their brain fed LAL had up to the two weeks, or 25%, greater median lifespan than those fed a standard sucrose diet. In addition, LAL improved mutant PINK1 B9 and Aβ42-induced flight impairments in the Drosophila wing. Our microscopy analyses revealed that individuals fed LAL had improved atypical ommatidia as well as an increased thirteen percentage of flight ability than those fed a control diet. We propose that LAL, rich in naturally occurring probiotics and antioxidants, promotes the survival of neurons in brain and wing muscle tissues with increased levels of mutant PINK1 B9 and Aβ42 via a protective cell survival mechanism.展开更多
Oxidative stress has been strongly associated with Parkinson disease (PD) aetiology. We investigated the effects of blueberry extract (BBE) supplementation on α-synuclein induced phenotypes in a Drosophila melanogast...Oxidative stress has been strongly associated with Parkinson disease (PD) aetiology. We investigated the effects of blueberry extract (BBE) supplementation on α-synuclein induced phenotypes in a Drosophila melanogaster model of PD. Enhanced α-synuclein expression in D. melanogaster dopaminergic (DA) neurons can reduce lifespan and we have performed longevity assays to measure the effects of BBE on D. melanogaster survival. Flies expressing α-synuclein in their DA neurons fed BBE had up to an 8 day, or 15%, greater median lifespan than those fed a standard control diet. In addition, BBE improved α-synuclein-induced developmental defects in the Drosophila eye. Our biometric analyses revealed that individuals fed BBE had less atypical ommatidia as well as an increased number of mechanosensory bristle cells than those fed a control diet. We propose that BBE, rich in naturally occurring antioxidants, promotes the survival of neurons in tissues with increased levels of α-synuclein through a protective cell survival mechanism.展开更多
Oxidative stress has been strongly related with Alzheimer disease pathogenesis. We determined the effects of watermelon powder (WMP) and Lactococcus lactis subsp lactis (LAL) supplementation on the generated Aβ42-ind...Oxidative stress has been strongly related with Alzheimer disease pathogenesis. We determined the effects of watermelon powder (WMP) and Lactococcus lactis subsp lactis (LAL) supplementation on the generated Aβ42-induced phenotypes in a Drosophila melanogaster model of AD. Enhanced Aβ42 expression in D. melanogaster neurons can diminish lifespan and flight ability. We have observed longevity methods to assay the effects of WMP and LAL on D. melanogaster survival. Furthermore, flies expressing Aβ42 in their body fed WMP and LAL had up to 90 days, or 35% longer median lifespan than those fed a control diet. In addition, synergistic effect of WMP and LAL improved Aβ42-induced flight impairments in the Drosophila wing tissues. Our microscope experiments revealed that individuals fed synergistic effect of WMP and LAL had ameliorated Aβ42 expression as well as increment of flight ability than Aβ42-induced flies. We propose that WMP is typically rich in L-citrulline and LAL, rich in naturally occurring probiotics and antioxidants, and that it promotes the survival of neurons in brain and wing muscle tissues with increased levels of Aβ42 via a protective cell survival mechanism.展开更多
Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in...Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in the compound eye of the pupa. Here, we investigate the role of ten-α during development of the compound eye by using the Gal4/ UAS system to induce ten-α overexpression in the developing eye. We found that overexpression of ten-α can perturb eye development during all stages examined. In an early stage, overexpression of ten-α in eye primordial cells caused small and rough eyes and interfered with photoreceptor cell recruitment, resulting in some ommatidia having fewer or extra photoreceptor cells. Conversely, ten-α overexpression daring ommatidial formation caused severe eye defects due to absence of many cellular components. Interestingly, overexpression of ten-α in the late stage developing ommatidial cluster affected the number of pigment cells, caused cone cells proliferation in many ommatidia, and caused some photoreceptor cell defects. These results suggest that ten-α may be a novel gene required for normal eye morphogenesis.展开更多
文摘Oxidative stress has been strongly related with Parkinson disease (PD) and Alzheimer disease pathogenesis. We determined the effects of Lactococcus lactis (LAL) supplementation on the generated loss-of-function mutants of PINK1 B9, an AR-JP-linked gene and Aβ42 induced phenotypes in a Drosophila melanogaster model of PD/AD. Enhanced mutant PINK1 B9 and Aβ42 expression in D. melanogaster dopaminergic (DA) neurons can curtail lifespan, flight muscle accompanied by locomotive defects and we have observed longevity methods to assay the effects of LAL on D. melanogaster survival. Furthermore, flies expressing mutant PINK1 B9 and Aβ42 in their brain fed LAL had up to the two weeks, or 25%, greater median lifespan than those fed a standard sucrose diet. In addition, LAL improved mutant PINK1 B9 and Aβ42-induced flight impairments in the Drosophila wing. Our microscopy analyses revealed that individuals fed LAL had improved atypical ommatidia as well as an increased thirteen percentage of flight ability than those fed a control diet. We propose that LAL, rich in naturally occurring probiotics and antioxidants, promotes the survival of neurons in brain and wing muscle tissues with increased levels of mutant PINK1 B9 and Aβ42 via a protective cell survival mechanism.
文摘Oxidative stress has been strongly associated with Parkinson disease (PD) aetiology. We investigated the effects of blueberry extract (BBE) supplementation on α-synuclein induced phenotypes in a Drosophila melanogaster model of PD. Enhanced α-synuclein expression in D. melanogaster dopaminergic (DA) neurons can reduce lifespan and we have performed longevity assays to measure the effects of BBE on D. melanogaster survival. Flies expressing α-synuclein in their DA neurons fed BBE had up to an 8 day, or 15%, greater median lifespan than those fed a standard control diet. In addition, BBE improved α-synuclein-induced developmental defects in the Drosophila eye. Our biometric analyses revealed that individuals fed BBE had less atypical ommatidia as well as an increased number of mechanosensory bristle cells than those fed a control diet. We propose that BBE, rich in naturally occurring antioxidants, promotes the survival of neurons in tissues with increased levels of α-synuclein through a protective cell survival mechanism.
文摘Oxidative stress has been strongly related with Alzheimer disease pathogenesis. We determined the effects of watermelon powder (WMP) and Lactococcus lactis subsp lactis (LAL) supplementation on the generated Aβ42-induced phenotypes in a Drosophila melanogaster model of AD. Enhanced Aβ42 expression in D. melanogaster neurons can diminish lifespan and flight ability. We have observed longevity methods to assay the effects of WMP and LAL on D. melanogaster survival. Furthermore, flies expressing Aβ42 in their body fed WMP and LAL had up to 90 days, or 35% longer median lifespan than those fed a control diet. In addition, synergistic effect of WMP and LAL improved Aβ42-induced flight impairments in the Drosophila wing tissues. Our microscope experiments revealed that individuals fed synergistic effect of WMP and LAL had ameliorated Aβ42 expression as well as increment of flight ability than Aβ42-induced flies. We propose that WMP is typically rich in L-citrulline and LAL, rich in naturally occurring probiotics and antioxidants, and that it promotes the survival of neurons in brain and wing muscle tissues with increased levels of Aβ42 via a protective cell survival mechanism.
文摘Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in the compound eye of the pupa. Here, we investigate the role of ten-α during development of the compound eye by using the Gal4/ UAS system to induce ten-α overexpression in the developing eye. We found that overexpression of ten-α can perturb eye development during all stages examined. In an early stage, overexpression of ten-α in eye primordial cells caused small and rough eyes and interfered with photoreceptor cell recruitment, resulting in some ommatidia having fewer or extra photoreceptor cells. Conversely, ten-α overexpression daring ommatidial formation caused severe eye defects due to absence of many cellular components. Interestingly, overexpression of ten-α in the late stage developing ommatidial cluster affected the number of pigment cells, caused cone cells proliferation in many ommatidia, and caused some photoreceptor cell defects. These results suggest that ten-α may be a novel gene required for normal eye morphogenesis.