期刊文献+
共找到4,610篇文章
< 1 2 231 >
每页显示 20 50 100
Pd-Catalyzed highly regioselective migratory hydroesterification of internal olefins with formates
1
作者 Junhua Li Tianci Shen +2 位作者 Yahui Zhuang Yu Fu Yian Shi 《Chinese Chemical Letters》 2025年第7期371-375,共5页
Double bonds of internal olefins can be efficiently migrated to the terminal carbons and regioselectively hydroesterified with formates in the presence of Pd(OAc)_(2) and 1,2-DTBPMB under mild reaction conditions,prov... Double bonds of internal olefins can be efficiently migrated to the terminal carbons and regioselectively hydroesterified with formates in the presence of Pd(OAc)_(2) and 1,2-DTBPMB under mild reaction conditions,providing a wide variety of corresponding linear carboxylic esters bearing various functional groups in good yields and>20:1 linear/branch ratios.The reaction is optionally simple and does not need to use CO gas and acid co-catalysts. 展开更多
关键词 PD-CATALYZED Migratory hydroesterification Internal olefins olefin isomerization FORMATES
原文传递
Confining Molecular rhodium phosphine catalysts within liquid-solid hybrid microreactor for olefin hydroformylation
2
作者 Xiaoting Hao Qi Liu +2 位作者 Yuwei Wang Xiaoming Zhang Hengquan Yang 《Chinese Journal of Catalysis》 2025年第6期261-270,共10页
The concept of liquid-solid hybrid catalyst that featuring a truly homogeneous liquid microenvironment together with insoluble solid characteristics has been established recently by our group,which enables us to conve... The concept of liquid-solid hybrid catalyst that featuring a truly homogeneous liquid microenvironment together with insoluble solid characteristics has been established recently by our group,which enables us to conveniently bridge the gap between homo-and heterogeneous catalysis.In this study,we extend this general concept to the confinement of molecular rhodium phosphine complexes,including Rh-TPPTS,Rh-TPPMS and Rh-SXP,for olefin hydroformylation reactions.A series of hybrid catalyst materials consisting a modulated liquid interior([BMIM]NTf_(2),[BMIM]PF_(6),[BMIM]BF_(4) or H_(2)O)and a permeable silica crust were fabricated through our developed Pickering emulsion-based method,showing 9.4–24.2-fold activity enhancement and significantly improved aldehyde selectivity(from 72.2%,61.8%to 86.6%)compared to their biphasic counterparts or traditional supported liquid phase system in the hydroformylation of 1-dodecene.Interestingly,the catalytic efficiency was demonstrated to be tunable by rationally engineering the thickness of porous crust and dimensions of the liquid pool.The thus-attained hybrid catalyst could also successfully catalyze the hydroformylation of a variety of olefin substrates and be recycled without a significant loss of activity for at least seven times. 展开更多
关键词 Immobilization Molecular catalyst olefin hydroformylation Heterogeneous catalysis Hybrid microreactor
在线阅读 下载PDF
Preparation and Hydrogenation of Dicyclopentadiene-based Cyclic Olefin Copolymers
3
作者 Xiang-Han Zhang Xiao-Hui Mao +4 位作者 Huan Gao Shui-Yuan Luo Zhe Ma Li Pan Yue-Sheng Li 《Chinese Journal of Polymer Science》 2025年第9期1527-1536,I0007,共11页
The design of low-cost and high-performance cyclic olefin copolymers remains challenging.Ethylene copolymers with dicyclopentadiene(DCPD)were prepared using Ph_(2)C(Cp)(Flu)ZrCl_(2)(Cat.1),rac-Et(Ind)_(2)ZrCl_(2)(Cat.... The design of low-cost and high-performance cyclic olefin copolymers remains challenging.Ethylene copolymers with dicyclopentadiene(DCPD)were prepared using Ph_(2)C(Cp)(Flu)ZrCl_(2)(Cat.1),rac-Et(Ind)_(2)ZrCl_(2)(Cat.2),Me_(2)C(Cp)(Flu)ZrCl_(2)(Cat.3)andMe_(2)Si(Ind)_(2)ZrCl_(2)(Cat.4)combined with[Ph_(3)C][B(C_(6)F_(5))_(4)]/iBu_(3)Al.Ni(acac)_(2)/iBu_(3)Al was then used to catalyze the hydrogenation of the intracyclic double bonds of ethylene/DCPD copolymers.The results showed that compared to C_(2) symmetric catalysts(Cat.2 and Cat.4),Cs symmetric catalysts(Cat.1 and Cat.3)facilitated the incorporation of copolymers with higher DCPD.1H-and ^(13)C-NMR spectra indicated that ethylene/DCPD copolymerization occurred via enhancement of the norbornene ring.Additionally,measurement of the reactivity ratios provided further confirmation that the copolymers had random sequence distributions.All these samples demonstrated transmittance values above 90%in the visible wavelength range from 400 nm to 800 nm.By changing the fraction of monomers,the glass transition temperature,refractive index,Young's modulus,and tensile strength of the copolymer increased as the incorporation of DCPD increased,whereas the Abbe number and elongation at break decreased.Compared with ethylene/norbornene and ethylene/tetracyclicdodecene copolymers,ethylene/DCPD copolymers,with excellent optical and mechanical properties,are promising materials. 展开更多
关键词 Cyclic olefin copolymers Coordination polymerization Metallocene catalyst
原文传递
Extended π-conjugated systems by external ligand-assisted C-H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fiuorescence materials
4
作者 Ruike Hu Kangmin Wang +4 位作者 Junxiang Liu Jingxian Zhang Guoliang Yang Liqiu Wan Bijin Li 《Chinese Chemical Letters》 2025年第4期131-138,共8页
The design and synthesis of a novel π-conjugated fiuorescent framework by external ligand-assisted C-H olefination of heterocycles with excellent regioselectivity and broad substrate scope are reported herein.These n... The design and synthesis of a novel π-conjugated fiuorescent framework by external ligand-assisted C-H olefination of heterocycles with excellent regioselectivity and broad substrate scope are reported herein.These novel fiuorescent materials could present full-color-tunable emissions with large Stokes shifts. Furthermore, the protocol provides an opportunity to rapidly screen novel organic single-molecule whitelight materials with high fiuorescence quantum yields. The robust organic and low-cost white lightemitting diodes could rapidly be fabricated using the white-light-emitting material. Experimental data and theoretical calculations indicate that in the white-light dual emission the relatively short wavelength from high-lying singlet state emission and the relatively long wavelength from low-lying singlet state emission. The anti-Kasha dual-emission systems will provide a foundation for the development and application of organic single-molecule white light materials, effectively promoting the development and innovation of luminescent materials. In addition, this method demonstrated its potential application in the synthesis of new near-infrared(NIR) fiuorescence materials with large Stokes shifts based on the olefination of heterocycles. 展开更多
关键词 π-Conjugated fiuorescent framework C—H olefination Organic single-molecule white-light materials HETEROCYCLES NIR fiuorescence materials
原文传递
First-principles microkinetic simulations revealing the driving effect of zeolite in bifunctional catalysts for the conversion of syngas to olefins
5
作者 Wende Hu Jun Ke +1 位作者 Yangdong Wang Chuanming Wang 《Chinese Journal of Catalysis》 2025年第6期222-233,共12页
Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we t... Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we theoretically addressed the kinetics of the direct STO reaction on typical ZnAl_(2)O_(4)/zeolite catalysts by establishing a complete reaction network,consisting of methanol synthesis and conversion,water gas shift(WGS)reaction,olefin hydrogenation,and other relevant steps.The WGS reaction occurs very readily on ZnAl_(2)O_(4) surface whereas which is less active towards alkane formation via olefin hydrogenation,and the latter can be attributed to the characteristics of the H_(2) heterolytic activation and the weak polarity of olefins.The driving effect of zeolite component towards CO conversion was demonstrated by microkinetic simulations,which is sensitive to reaction conditions like space velocity and reaction temperature.Under a fixed ratio of active sites between oxide and zeolite components,the concept of the“impossible trinity”of high CO conversion,high olefin selectivity,and high space velocity can thus be manifested.This work thus provides a comprehensive kinetic picture on the direct STO conversion,offering valuable insights for the design of each component of bifunctional catalysts and the optimization of reaction conditions. 展开更多
关键词 Syngas to olefins Bifunctional catalysis Microkinetic simulations Driving effect Impossible trinity ZnAl_(2)O_(4)oxide
在线阅读 下载PDF
Strong interaction between Fe and Ti compositions for effective CO_(2)hydrogenation to light olefins
6
作者 Hao Liang Shunan Zhang +4 位作者 Ruonan Zhang Haozhi Zhou Lin Xia Yuhan Sun Hui Wang 《Chinese Journal of Catalysis》 2025年第4期146-157,共12页
Fe-based catalysts are widely used for CO_(2)hydrogenation to light olefins(C_(2–4)=);however,precise regulation of active phases and the balance between intermediate reactions remain significant challenges.Herein,we... Fe-based catalysts are widely used for CO_(2)hydrogenation to light olefins(C_(2–4)=);however,precise regulation of active phases and the balance between intermediate reactions remain significant challenges.Herein,we find that the addition of moderate amounts of Ti forms a strong interaction with Fe compositions,modulating the Fe_(3)O_(4)and Fe_(5)C_(2)contents.Enhanced interaction leads to an increased Fe_(5)C_(2)/Fe_(3)O_(4)ratio,which in turn enhances the adsorption of reactants and intermediates,promoting CO hydrogenation to unsaturated alkyl groups and facilitating C–C coupling.Furthermore,the strong Fe-Ti interaction induces the preferential growth of Fe_(5)C_(2)into prismatic structures that expose the(020),(–112),and(311)facets,forming compact active interfacial sites with Fe_(3)O_(4)nanoparticles.These facet and interfacial effects significantly promote the synergistic coupling of the reverse water gas shift and Fischer-Tropsch reactions.The optimized 3K/FeTi catalyst with the highest Fe_(5)C_(2)/Fe_(3)O_(4)ratio of 3.6 achieves a 52.2%CO_(2)conversion rate,with 44.5%selectivity for C2–4=and 9.5%for CO,and the highest space-time yield of 412.0 mg gcat^(–1)h^(–1)for C_(2–4)=. 展开更多
关键词 CO_(2)hydrogenation Light olefins Strong Fe-Ti interaction Fe_(5)C_(2) Active phase modulation
在线阅读 下载PDF
Recent Advances in Non-metallocene Catalysts for Olefin Polymerization
7
作者 Wang Kefeng Lei Junyu +2 位作者 Zhang Wei Zhou Chenguang Hao Haijun 《China Petroleum Processing & Petrochemical Technology》 CSCD 2024年第4期170-192,共23页
Non-metallocene catalysts have emerged as a promising alternative to traditional metallocene catalysts for olefin polymerization,offering unique advantages regarding polymer structure control and product diversity.Rec... Non-metallocene catalysts have emerged as a promising alternative to traditional metallocene catalysts for olefin polymerization,offering unique advantages regarding polymer structure control and product diversity.Recent advancements in ligand design and synthesis have led to the development of highly active and selective non-metallocene catalysts capable of producing polyolefins with tailored properties.These catalysts exhibit enhanced thermal stability,improved comonomer incorporation,and the ability to polymerize a wider range of monomers.Furthermore,nonmetallocene catalysts have shown potential as promising compounds for the production of novel polymer architectures,including hyperbranched and stereoblock polymers.This work provides an overview of the current state of non-metallocene catalysts for olefin polymerization,examining their advantages,challenges,and future prospects in the field of polymer synthesis. 展开更多
关键词 non-metallocene catalyst olefin polymerization olefin copolymerization post-metallocene late transition metal
在线阅读 下载PDF
Modeling and analysis of air combustion and steam regeneration in methanol to olefins processes
8
作者 Jinqiang Liang Danzhu Liu +1 位作者 Shuliang Xu Mao Ye 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期94-103,共10页
Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However... Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance. 展开更多
关键词 Model Methanol to olefins REGENERATION Greenhouse gas Processes simulation
在线阅读 下载PDF
Low-carbon Olefins over the Acid-base Bifunctional Catalysts Derived from Heavy Oil Millisecond Gas-phase In-line Catalytic Dehydrogenation
9
作者 Tang Ruiyuan Gao Yuru +6 位作者 Li Yani Shen Zhibing Zhong Hanbin Yuan Meng Hu Qingxun Zhang Juntao Tian Yuanyu 《China Petroleum Processing & Petrochemical Technology》 CSCD 2024年第4期84-95,共12页
Heavy oil millisecond gas-phase in-line catalytic dehydrogenation over bifunctional catalysts was adopted to produce low-carbon olefins.In this study,the effect of the uncatalyzed reaction composition and distribution... Heavy oil millisecond gas-phase in-line catalytic dehydrogenation over bifunctional catalysts was adopted to produce low-carbon olefins.In this study,the effect of the uncatalyzed reaction composition and distribution of atmosphere residue(AR)pyrolysis vapor at 650℃ was investigated for the first time.In the pyrolysis vapor,the yield of low-carbon olefins was only 15.2%.The yield of 1-olefin and n-alkanes,which are the primary products of rapid heavy oil pyrolysis,reached approximately 54.0%.To achieve further catalytic dehydrogenation,AR pyrolysis volatiles were catalyzed over single calcium aluminate(C_(12)A_(7)),ZSM-5,and C_(12)A_(7)-ZSM-5(CZ)catalysts at 650℃,which possess different pore structures,and acid-base properties.The ZSM-5 catalyst obtained the highest low-carbon olefin yield after catalytic dehydrogenation of pyrolysis volatiles.Finally,the C_(12)A_(7) and CZ stepwise coupling bifunctional catalysts increased the catalytic activity,and thus increased the higher low-carbon olefin yield but reduced the yields of alkanes and aromatics fraction.Notably,the yields of propylene and butane were important sources of the low-carbon olefins.Thus,heavy oil millisecond gas-phase in-line catalytic dehydrogenation could achieve the maximum conversion of these residues to produce low-carbon olefins. 展开更多
关键词 heavy oil acid-base bifunctional IN-LINE catalytic cracking low-carbon olefins dehydrogenation
在线阅读 下载PDF
SEAr Mechanism of the Products of 1,2-Dimethoxybenzene and a Captodative Olefin: A Theoretical Approach
10
作者 René Santana-García Judit Aviña-Verduzco +1 位作者 Rafael Herrera-Bucio Pedro Navarro-Santos 《Computational Chemistry》 CAS 2024年第3期57-74,共18页
In this work, a conceptual DFT investigation is carried out to study the electrophilic aromatic substitution reaction (SEAr) of 1,2-dimethoxybenzene and 3-(p-nitrobenzoyloxy)-but-3-en-2-one (a captodative olefin). Her... In this work, a conceptual DFT investigation is carried out to study the electrophilic aromatic substitution reaction (SEAr) of 1,2-dimethoxybenzene and 3-(p-nitrobenzoyloxy)-but-3-en-2-one (a captodative olefin). Herein, we have studied the regioselectivity of such reactions considering the effect of solvents of different polarities and the presence of BF3 as the catalyst. Understanding the effect of the solvent and the role of the Lewis catalyst on the pathway of Friedel-Crafts reactions is important to further facilitate the introduction of side chains in aromatic rings with captodative olefins, and thus be able to synthesize compounds analogous to natural products, e.g., α-asarone. Global and local reactivity descriptors were obtained, finding a key role when these reactions take place in the presence of nonpolar solvents. In addition, the Intrinsic Reaction Coordinate diagrams (IRCs) were calculated. Such results of the free activation energy (ΔG‡) clearly show that this reaction is entirely regioselective, forming the unique product in the para position, in agreement with our predictions of the local reactivity descriptors obtained from the Parr functions, wherein the first reaction step, the carbon C4 of the aromatic compound 1,2-dimethoxybenzene is favored. Moreover, from the IRCs, we found that the reactivity of the para adduct increases in the presence of nonpolar solvents. Interestingly, considering a polar solvent (MeCN), the intermediate formed (σ-complex) is more stable since it presents a more significant charge transfer with the solvent than the intermediate in the presence of a nonpolar solvent, making a reaction more challenging to reach when the reaction is carried out in the presence of MeCN because of the increasing of the energetic barrier from σ-complex to the TS2 in the intrinsic reactive coordinate diagram. Therefore, the polarity of the solvent plays an important role, particularly in the activation energy of the TS2. Our computational results explained our experimental results quite well, confirming the importance of the solvent’s polarity to this SEAr reaction and explaining why, experimentally, the nonpolar solvent drove the reaction under catalyzed conditions. 展开更多
关键词 Captodative olefins IRC ALKYLATION HSAB SEAr
在线阅读 下载PDF
Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process 被引量:11
11
作者 高新华 张建利 +4 位作者 陈宁 马清祥 范素兵 赵天生 椿范立 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期510-516,共7页
Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical prope... Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability. 展开更多
关键词 Zn promoter Fe-based catalyst Light olefin Fischer-Tropsch synthesis Microwave-hydrothermal method
在线阅读 下载PDF
Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction 被引量:17
12
作者 李静 刘粟侥 +3 位作者 张怀科 吕恩静 任鹏举 任杰 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第2期308-315,共8页
The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 ... The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 adsorption-desorption,X-ray fluorescence spectroscopy,scanning electron microscopy,X-ray diffraction,magic angle spinning nuclear magnetic resonance,temperature-programmed desorption of ammonia,and infrared spectroscopy of pyridine adsorption.The results suggest that the BET surface area and SiO2/Al2O3 ratio of these samples are similar,while the snowflake-shaped ZSM-5 zeolite possesses more of the(101) face,and distortion,dislocation,and asymmetry in the framework,resulting in a larger number of acid sites than the conventional samples.Catalysts for the methanol to olefin(MTO) reaction were prepared by loading Ca on the samples.The snowflake-shaped Ca/ZSM-5 zeolite exhibited excellent selectivity for total light olefin(72%) and propene(39%) in MTO.The catalytic performance influenced by the morphology can be mainly attributed to the snowflake-shaped ZSM-5 zeolite possessing distortion,dislocation,and asymmetry in the framework,and lower diffusion limitation than the conventional samples. 展开更多
关键词 ZSM-5 zeolite MODIFICATION Methanol to olefins
在线阅读 下载PDF
Polymerization Mechanism of α-Linear Olefin 被引量:3
13
作者 邢文国 张长桥 +2 位作者 于萍 刘成卜 魏云鹤 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期39-44,I0001,共7页
The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction a... The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization. 展开更多
关键词 Density functional theory Polymerization mechanism α-Linear olefin Drag reduction agent Ziegler-Natta catalyst
在线阅读 下载PDF
催化裂化装置多产丙烯助剂Olefins Max的应用试验 被引量:12
14
作者 吴青 周通 何鸣元 《炼油技术与工程》 CAS 北大核心 2004年第5期42-46,共5页
对多产丙烯的助剂OlefinsMax进行了小型和中型试验评价 ,并对该助剂在镇海炼油化工股份有限公司3 .0 0Mt/a催化裂化装置的工业应用试验作了总结 ,结果表明通过在主催化剂中配合使用多产丙烯助剂 ,能明显增加丙烯收率 ,在装置生产负荷为 ... 对多产丙烯的助剂OlefinsMax进行了小型和中型试验评价 ,并对该助剂在镇海炼油化工股份有限公司3 .0 0Mt/a催化裂化装置的工业应用试验作了总结 ,结果表明通过在主催化剂中配合使用多产丙烯助剂 ,能明显增加丙烯收率 ,在装置生产负荷为 80 %时主催化剂中添加 3 %~ 4%的OlefinsMax助剂 ,使装置每天多生产丙烯 5 0t以上 ,且对汽油质量无不利影响 。 展开更多
关键词 催化裂化装置 丙烯 olefinsMax 助催化剂 分子筛
在线阅读 下载PDF
烯式吡虫啉(olefin IMI)光解及其光解产物研究 被引量:1
15
作者 葛峰 单正军 +2 位作者 戴亦军 陈婷 袁生 《生态与农村环境学报》 CAS CSSCI CSCD 北大核心 2009年第2期103-106,共4页
烟碱类杀虫剂吡虫啉(imidacloprid,IMI)在环境中可代谢为生物活性提高10倍的烯式吡虫啉(olefin IMI)。研究了olefin IMI的光稳定性、光解动力学和光解代谢途径。结果表明:olefin IMI在避光条件下较为稳定,室温下放置400d后,olefin IMI... 烟碱类杀虫剂吡虫啉(imidacloprid,IMI)在环境中可代谢为生物活性提高10倍的烯式吡虫啉(olefin IMI)。研究了olefin IMI的光稳定性、光解动力学和光解代谢途径。结果表明:olefin IMI在避光条件下较为稳定,室温下放置400d后,olefin IMI含量仅减少3%;而在室内模拟日光条件下,olefin IMI易于分解,光解反应符合一级动力学方程(r>0.99),半衰期为4d。olefin IMI的光解反应存在2条主要途径:一是羟基化生成4,5-二羟基化吡虫啉,该产物进一步氧化断裂药效基团硝基亚胺基生成羰基化产物;二是直接脱去硝基基团生成胍基产物。 展开更多
关键词 烯式吡虫啉(olefin IMI) 光解 代谢途径
在线阅读 下载PDF
Production of Light Olefins from Biosyngas by Two-stage Catalytic Conversion Process via Dimethyl Ether 被引量:1
16
作者 李宇萍 涂军令 +4 位作者 王铁军 马隆龙 张兴华 章青 蔡炽柳 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第2期227-232,I0004,共7页
NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the f... NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas. 展开更多
关键词 Light olefins Two-stage conversion Dimethyl ether Biosyngas NiSAPO-34/HZSM-5
暂未订购
Catalytic epoxidation of olefin over supramolecular compounds of molybdenum oxide clusters and a copper complex 被引量:4
17
作者 高洪成 颜岩 +5 位作者 徐晓弘 于杰辉 牛会玲 高文秀 张文祥 贾明君 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1811-1817,共7页
The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.... The catalytic epoxidation of olefin was investigated on two copper complex-modified molybdenum oxides with a 3D supramolecular structure, [Cu(bipy)]4[Mo15O47].2H2O (1) and [Cu1(bix)][(Cu1bix) (δ-MoVl8O26)0.5] (2) (bipy = 4,4'-bipyridine, bix = 1,4-bis(imidazole-1-ylmethyl)benzene). Both compounds were catalytically active and stable for the epoxidation of cyclooctene, 1-octene, and styrene with tert-butyl hydroperoxide (t-BuOOH) as oxidant. The excellent catalytic performance was attributed to the presence of stable coordination bonds between the molybdenum oxide and copper complex, which resulted in the formation of easily accessible Mo species with high electropositivity. In addition, the copper complex also acted as an active site for the activation of t-BuOOH, thus im- proving these copper complex-modified polyoxometalates. 展开更多
关键词 Supramolecular compound Molybdenum oxide cluster Copper complex olefin Epoxidation
在线阅读 下载PDF
Effect of the support on cobalt carbide catalysts for sustainable production of olefins from syngas 被引量:5
18
作者 Xinxing Wang Wen Chen +7 位作者 Tiejun Lin Jie Li Fei Yu Yunlei An Yuanyuan Dai Hui Wang Liangshu Zhong Yuhan Sun 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第12期1869-1880,共12页
Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structu... Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structure characterization indicates that the cobalt‐support interaction has a great influence on the Co2C morphology and catalytic performance.The CNT support facilitates the formation of a CoMn composite oxide during calcination,and Co2C nanoprisms were observed in the spent catalysts,resulting in a product distribution that greatly deviates from the classical Anderson‐Schulz‐Flory(ASF)distribution,where only 2.4 C%methane was generated.The Co3O4 phase for SiO2‐andγ‐Al2O3‐supported catalysts was observed in the calcined sample.After reduction,CoO,MnO,and low‐valence CoMn composite oxide were generated in theγ‐Al2O3‐supported sample,and both Co2C nanospheres and nanoprisms were identified in the corresponding spent catalyst.However,only separated phases of CoO and MnO were found in the reduced sample supported by SiO2,and Co2C nanospheres were detected in the spent catalyst without the evidence of any Co2C nanoprisms.The Co2C nanospheres led to a relatively high methane selectivity of 5.8 C%and 12.0 C%of theγ‐Al2O3‐and SiO2‐supported catalysts,respectively.These results suggest that a relatively weak cobalt‐support interaction is necessary for the formation of the CoMn composite oxide during calcination,which benefits the formation of Co2C nanoprisms with promising catalytic performance for the sustainable production of olefins via syngas. 展开更多
关键词 Fischer‐Tropsch to olefins Cobalt carbide Supported catalyst olefin SYNGAS
在线阅读 下载PDF
Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer–Tropsch to olefins reaction 被引量:3
19
作者 Martin Oschatz Nynke Krans +1 位作者 Jingxiu Xie Krijn P.de Jong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期985-993,共9页
The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The ca... The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The catalytic activity can be improved and undesired formation of alkanes can be suppressed by the addition of sodium and sulfur as promoters but the influence of their content and ratio remains poorly understood and the promoted catalysts often suffer from rapid deactivation due to particle growth. A series of carbon black-supported iron catalysts with similar iron content and nominal sodium/sulfur loadings of 1–30/0.5–5 wt% with respect to iron are prepared and characterized under FTO conditions at 1and 10 bar syngas pressure to illuminate the influence of the promoter level on the catalytic properties.Iron particles and promoters undergo significant reorganization during FTO operation under industrially relevant conditions. Low sodium content(1–3 wt%) leads to a delay in iron carbide formation. Sodium contents of 15–30 wt% lead to rapid loss of catalytic activity due to the covering of the iron surface with promoters during particle growth under FTO operation. Higher activity and slower loss of activity are observed at low promoter contents(1–3 wt% sodium and 0.5–1 wt% sulfur) but a minimum amount of alkali is required to effectively suppress methane and C–Cparaffin formation. A reference catalyst support(carbide-derived carbon aerogel) shows that the optimum promoter level depends on iron particle size and support pore structure. 展开更多
关键词 Fischer–Tropsch to olefins synthesis C2–C4 olefins Iron catalysts Promoters Carbon supports
在线阅读 下载PDF
Production of Low-carbon Light Olefins from Catalytic Cracking of Crude Bio-oil 被引量:5
20
作者 袁燕妮 王铁军 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期237-244,I0004,共9页
Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light ... Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light olefins were performed by using the La/HZSM-5 catalyst. The highest olefins yield from crude bio-oil reached 0.19 kg/(kg crude bio-oil). The reaction conditions including temperature, weight hourly space velocity, and addition of La into the HZSM-5 zeolite can be used to control both olefins yield and selectivity. Moderate adjusting the acidity with a suitable ratio between the strong acid and weak acid sites through adding La to the zeolite effectively enhanced the olefins selectivity and improved the catalyst stability. The production of light olefins from crude bio-oil is closely associated with the chemical composition and hydrogen to carbon effective ratios of feedstock. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the bio-oil conversion to light olefins was also discussed. 展开更多
关键词 Crude bio-oil Low-carbon olefin Catalytic cracking Zeolite catalyst
在线阅读 下载PDF
上一页 1 2 231 下一页 到第
使用帮助 返回顶部