This paper describes experiments with our self-built Wave Energy Convertor(WEC)monitoring system in the Maldives and demonstrates how we developed a horizontal-axis type,half-scale,wave energy converter(WEC)that gener...This paper describes experiments with our self-built Wave Energy Convertor(WEC)monitoring system in the Maldives and demonstrates how we developed a horizontal-axis type,half-scale,wave energy converter(WEC)that generates electricity in the coastal breaking wave zone.In order to measure this power generator and turbine’s efficiency,voltage and current were measured by pulling the generator with a 35 cm diameter turbine(half scale).We obtained data showing 400 W peak power in water speed of 3.1 m/s.Consequently,we assembled two sets of WEC,placed them near the shoreline on Kandooma Island in the Maldives in May 2018,and measured the wave energy at the breaking wave zone.A monitoring system was set up in one rack for the two sets of WECs,connected simultaneously.Two outputs of the generators were rectified and connected to power resistors and internal LED displays.The outputs could also be switched to connect to 24 electric double layer capacitors(EDLC),in order to perform a continuous lighting test of external high-power LED lights.The wave power data were continuously saved by an automated data logger and could be transferred from the installation site,to Japan via the Internet.The wave power was measured on Kandooma Island in the Maldives for a long period,and is still ongoing.Examples of the obtained data are shown in this paper.展开更多
为了更好的提高成都地区(30.1°N-31.5°N,103°E-104.9°E)强降水的预报准确率,利用国家气象中心(T639)高分辨预报场(0.28°×0.28°)资料以及加密自动站降水量资料对成都地区2011-2012年汛期(7-9月)共计1...为了更好的提高成都地区(30.1°N-31.5°N,103°E-104.9°E)强降水的预报准确率,利用国家气象中心(T639)高分辨预报场(0.28°×0.28°)资料以及加密自动站降水量资料对成都地区2011-2012年汛期(7-9月)共计15例强降水个例进行湿螺旋度指标的统计分析,分别归纳总结出3 h、24 h内强降水发生、发展及落区分布的判据。利用这些判据对2013年6月20日以及7月8日发生在成都地区的两例强降水过程进行检验,同时根据这些判据对成都2013年6-8月强降水过程进行检验评分并投入业务试应用。结果表明,低层湿螺旋度对成都区域性暴雨的预报准确率较高。700 h Pa和850h Pa湿螺旋度正值区的分布对强降水落区分布有较好的预报效果,强降水出现在700 h Pa湿螺旋度正、负值等值线密集区(靠近正值一侧),以及850 h Pa正值区;当700 h Pa连续5~8个3 h维持在20×10-11~80×10-11Pa·s-3湿螺旋度时,出现区域性暴雨天气;当700 h Pa连续5~8个3 h维持在20×10-11~140×10-11Pa·s-3湿螺旋度时,出现区域性大暴雨天气;当不同层次上出现300×10-11~500×10-11Pa·s-3时,可能出现局地强对流天气,如大风、短时强降水等。展开更多
文摘This paper describes experiments with our self-built Wave Energy Convertor(WEC)monitoring system in the Maldives and demonstrates how we developed a horizontal-axis type,half-scale,wave energy converter(WEC)that generates electricity in the coastal breaking wave zone.In order to measure this power generator and turbine’s efficiency,voltage and current were measured by pulling the generator with a 35 cm diameter turbine(half scale).We obtained data showing 400 W peak power in water speed of 3.1 m/s.Consequently,we assembled two sets of WEC,placed them near the shoreline on Kandooma Island in the Maldives in May 2018,and measured the wave energy at the breaking wave zone.A monitoring system was set up in one rack for the two sets of WECs,connected simultaneously.Two outputs of the generators were rectified and connected to power resistors and internal LED displays.The outputs could also be switched to connect to 24 electric double layer capacitors(EDLC),in order to perform a continuous lighting test of external high-power LED lights.The wave power data were continuously saved by an automated data logger and could be transferred from the installation site,to Japan via the Internet.The wave power was measured on Kandooma Island in the Maldives for a long period,and is still ongoing.Examples of the obtained data are shown in this paper.
文摘为了更好的提高成都地区(30.1°N-31.5°N,103°E-104.9°E)强降水的预报准确率,利用国家气象中心(T639)高分辨预报场(0.28°×0.28°)资料以及加密自动站降水量资料对成都地区2011-2012年汛期(7-9月)共计15例强降水个例进行湿螺旋度指标的统计分析,分别归纳总结出3 h、24 h内强降水发生、发展及落区分布的判据。利用这些判据对2013年6月20日以及7月8日发生在成都地区的两例强降水过程进行检验,同时根据这些判据对成都2013年6-8月强降水过程进行检验评分并投入业务试应用。结果表明,低层湿螺旋度对成都区域性暴雨的预报准确率较高。700 h Pa和850h Pa湿螺旋度正值区的分布对强降水落区分布有较好的预报效果,强降水出现在700 h Pa湿螺旋度正、负值等值线密集区(靠近正值一侧),以及850 h Pa正值区;当700 h Pa连续5~8个3 h维持在20×10-11~80×10-11Pa·s-3湿螺旋度时,出现区域性暴雨天气;当700 h Pa连续5~8个3 h维持在20×10-11~140×10-11Pa·s-3湿螺旋度时,出现区域性大暴雨天气;当不同层次上出现300×10-11~500×10-11Pa·s-3时,可能出现局地强对流天气,如大风、短时强降水等。