Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migr...Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migration and aggregation. Based on geological mapping, structural data, and mechanical parameters of rocks, we reconstruct the traces for gas/oil migration and aggregation in Dabashan intra-continental orogen using numerical simulation. The study shows that gas/oil, obviously dominated by late Middle Jurassic-Early Cretaceous paleo-tectonic stress field that is characterized by NE-SW shortening in the Dabashan thrust belt and SW-emanating shortening in its foreland belt, massively migrate from the Dabashan thrust belt to its foreland belt, that is, NE to SW, resulting in the formation of some probable favorable areas for oil/gas mainly along the Tiexi -Wuxi fault, in some superposed structure (e.g., Zhenba , Wanyuan , Huangjinkou , and Tongnanba areas), and in the Zigui Basin. Thus, our study shows that numerical simulation can be effectively applied to study oil/gas migration and aggregation in intra-continental orogen and provided some significant evidences for oil/gas exploration.展开更多
This study analyzes the status-quo of the proved oil/gas initially-in-place and its variation trend,the proved undeveloped oil/gas initially-in-place,and the remaining proved technically recoverable reserves(TRR)of oi...This study analyzes the status-quo of the proved oil/gas initially-in-place and its variation trend,the proved undeveloped oil/gas initially-in-place,and the remaining proved technically recoverable reserves(TRR)of oil/gas in China as of 2020 based on statistics.As shown by the results,the proved oil initially-in-place(OIIP),the proved undeveloped OIIP,and the remaining proved TRR of oil in China are mainly distributed in the Bohai Bay,Ordos and Songliao Basins,and those of free gas are mainly in the Ordos,Sichuan,and Tarim Basins.From 2011 to 2020,the largest increment in the proved OIIP,the proved undeveloped OIIP and the remaining proved TRR of oil occurred in the Ordos Basin,followed by the Bohai Bay Basin,while that in the proved gas initially-in-place(GIIP),the proved undeveloped GIIP,and the remaining proved TRR of gas occurred in the Ordos Basin,followed by the Sichuan Basin.In addition,a comprehensive analysis reveals that the petroliferous basins in China with the potential of reserve addition and production growth include the Ordos Basin,the Bohai Bay Basin,the Sichuan Basin,and the Tarim Basin.展开更多
Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, Chin...Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, China has made remarkable achievements in oil/gas exploration in ultra-deep areas including carbonate and clastic reservoirs. Some (ultra) large-scale oil and gas fields have been discovered. The oil/gas accumulation mechanisms and key technologies of oil/gas reservoir exploration and development are summarized in this study in order to share China’s experiences. Ultra-deep oil/gas originates from numerous sources of hydrocarbons and multiphase charging. Liquid hydrocarbons can form in ultradeep layers due to low geothermal gradients or overpressures, and the natural gas composition in ultra-deep areas is complicated by the reactions between deep hydrocarbons, water, and rock or by the addition of mantle- or crust-sourced gases. These oils/gases are mainly stored in the original highenergy reef/shoal complexes or in sand body sediments. They usually have high original porosity. Secondary pores are often developed by dissolution, dolomitization, and fracturing in the late stage. The early pores have been preserved by retentive diageneses such as the early charging of hydrocarbons. Oil/gas accumulation in ultra-deep areas generally has the characteristics of near-source accumulation and sustained preservation. The effective exploration and development of ultra-deep oil/gas reservoirs depend on the support of key technologies. Use of the latest technologies such as seismic signal acquisition and processing, low porosity and permeability zone prediction, and gas–water identification has enabled the discovery of ultra-deep oil/gas resources. In addition, advanced technologies for drilling, completion, and oil/gas testing have ensured the effective development of these fields.展开更多
The static flux chamber method was applied to study natural emissions of methane to the atmosphere in the Luntai fault region of Yakela Condensed Oil/Gas Field in the Tarim Basin, Xinjiang Municipality, northwestern C...The static flux chamber method was applied to study natural emissions of methane to the atmosphere in the Luntai fault region of Yakela Condensed Oil/Gas Field in the Tarim Basin, Xinjiang Municipality, northwestern China. Using an online method, which couples together a gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/C/MS), 13^C/12^C ratios of methane in flux chambers were measured and showed that methane gases are liable to migrate from deep oil/gas reservoirs to the surface through fault regions and that a part of the migrated methane, which remains unoxidized can be emitted into the atmosphere. Methane emission rates were found to be highest in the mornings, lowest in the afternoons and then increase gradually in the evenings. Methane emission rates varied dramatically in different locations in the fault region. The highest methane emission rate was 10.96 mg/m^2·d, the lowest 4.38 mg/m^2, and the average 7.55 mg/ m^2·d. The 13^C/12^C ratios of the methane in the flux chambers became heavier as the enclosed methane concentrations increased gradually, which reveals that methane released from the fault region might come from thermogenic methane of the deep condensed oil/gas reservoir.展开更多
Natural bitumen is the evolutionary residue of hydrocarbon of sedimentary organic matter. Several kinds of bitumen with different occurrences, including bitumen in source rock, migration bitumen filled in fault, oil-b...Natural bitumen is the evolutionary residue of hydrocarbon of sedimentary organic matter. Several kinds of bitumen with different occurrences, including bitumen in source rock, migration bitumen filled in fault, oil-bed bitumen and paleo-reservoir bitumen, are distributed widely in the Dabashan foreland. These kinds of bitumen represent the process of oil/gas formation, migration and accumulation in the region. Bitumen in source rock fiUed in fractures and stylolite and experienced deformation simultaneously together with source rock themselves. It indicated that oil/gas generation and expelling from source rock occurred under normal buried thermal conditions during prototype basin evolution stages prior to orogeny. Occurrences of bitumen in source rock indicated that paleo- reservoir formation conditions existed in the Dabashan foreland. Migration bitumen being widespread in the fault revealed that the fault was the main channel for oil/gas migration, which occurred synchronously with Jurassic foreland deformation. Oil-bed bitumen was the kind of pyrolysis bitumen that distributed in solution pores of reservoir rock in the Dabashan foreland depression, the northeastern Sichuan Basin. Geochemistry of oil-bed bitumen indicated that natural gas that accumulated in the Dabashan foreland depression formed from liquid hydrocarbon by pyrolysis process. However, paleo-reservior bitumen in the Dabashan forleland was the kind of degradation bitumen that formed from liquid hydrocarbon within the paleo-reservior by oxidation, alteration and other secondary changes due to paleo-reservior damage during tectonics in the Dabashan foreland. In combination with the tectonic evolution of the Dabashan foreland, it is proposed that the oil/gas generated, migrated and accumulated to form the paleo-reservoir during the Triassic Indosinian tectonic movement. Jurassic collision orogeny, the Yanshan tectonic movement, led to intracontinental orogeny of the Dabashan area accompanied by geofluid expelling and paleo-reservoir damage in the Dabashan foreland. The present work proposed that there is liquid hydrocarbon exploration potential in the Dabashan foreland, while there are prospects for the existence of natural gas in the Dabashan foreland depression.展开更多
A static flux chamber method was applied to study natural emissions of methane into the atmosphere in the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China. Using an online method, which couples a gas ch...A static flux chamber method was applied to study natural emissions of methane into the atmosphere in the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China. Using an online method, which couples a gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/C/MS) together, the 13C/12C ratios of methane in the flux chambers were measured. The results demonstrated that methane gases were liable to migrate from deep oil/gas reservoir to the surface through microseepage and p...展开更多
The diversity of sandstone diagenesis mechanisms caused by the complex geological conditions of oil/gas basins in China could hardly be reasonably explained by the traditional concept of burial diagenesis. Three genes...The diversity of sandstone diagenesis mechanisms caused by the complex geological conditions of oil/gas basins in China could hardly be reasonably explained by the traditional concept of burial diagenesis. Three genesis types of thermal diagenesis, tectonic diagenesis and fluid diagenesis are presented on the basis of the dynamic environment of the oil/gas basins and.the controlling factors and mechanisms of sandstone diagenesis. Thermal diagenesis of sandstone reservoirs is related not only to the effect of formation temperature on diagenesis, but also to the significant changes in diagenesis caused by geothermal gradients. The concept of thermal compaction is presented. Thermal compaction becomes weaker with increasing depth and becomes stronger at a higher geothermal gradient. At the same formation temperature, the sandstone porosity in the region with a lower geothermal gradient is e^0.077+0.0042T times higher than that in the region with a higher geothermal gradient. Both sudden and gradual changes are observed in diagenetic evolution caused by structural deformation. Average sandstone compaction increased by 0.1051% for every 1.0MPa increase of lateral tectonic compressional stress, while late tectonic napping helped to preserve a higher porosity of underlying sandstone reservoir. Fluid diagenesis is a general phenomenon. The compaction caused by fluid properties is significant. The coarser the grain size, the stronger the fluid effect on compaction. The greater the burial depth, the weaker the fluid effect on compaction for the specific reservoir lithology and the greater the difference in the fluid effects on compaction between different grain sizes.展开更多
Whole-life-cycle integrity management of underground gas storages(UGSs)has been an important link to ensure its long-term safe and efficient operation.At present,the integrity of UGSs in oil/gasfields and its evaluati...Whole-life-cycle integrity management of underground gas storages(UGSs)has been an important link to ensure its long-term safe and efficient operation.At present,the integrity of UGSs in oil/gasfields and its evaluation techniques focus on surface facilities and injection/withdrawal wells,but its geological integrity lacks clear definition and evaluation object and systematic evaluation techniques.In this paper,relevant research achievements werefirstly summarized.Then,the concept of geological integrity with the gas-storage geological body as the evaluation object was put forward,and the evaluation system for the geological integrity of such UGSs was established.Finally,UGS geological integrity evaluation was carried out with the Hutubi Underground Gas Storage in Xinjiang as an example.And the following research results were obtained.First,UGS geological integrity is defined as the integrity degree of each component of a gas-storage geological body to meet operation requirements and fulfill seasonal and emergency peak shaving safely and economically during the operation of a UGS.Its connotation is that reservoir of geological body,caprock,fault and trap can supply the customers with gas continuously and stably and ensure the safe operation of the UGS in its service life.And its core lies in keeping the reliability,safety and economy of natural gas storage in the service life of a UGS.Second,the geological integrity evaluation system is composed of four evaluation techniques,including trap effectiveness,caprock integrity,fault stability and reservoir stability.Third,the evaluation results show that the Hutubi Underground Gas Storage has the potential of peak-shaving capacity enhancement by increasing the maximum operation pressure.In conclusion,the establishment of the geological integrity evaluation system for such UGSs improves the UGS integrity evaluation technique system and plays an instructive and practical role in ensuring the long-term safe and efficient operation of UGSs,increasing the maximum operation pressure and improving the peak shaving capacity.展开更多
The geothermal history of North China can be divided into at least four stages, i. c. Archaean (much hisher geothermal) stage, Paleoprotcrozoic (hish geothermal)stage, which resulted in four geotectonic stages (pregeo...The geothermal history of North China can be divided into at least four stages, i. c. Archaean (much hisher geothermal) stage, Paleoprotcrozoic (hish geothermal)stage, which resulted in four geotectonic stages (pregeosynehoe, geosyncline, platform and diwa stage) in the region. The geothermal field consists of three subgeothermal fields, theupper subgeothermal field with its depth of less than 2000 m, the middle subgeothermal field ranging from 2000 m to 5000 m in depth and the lower subgeothcrmal field locating at more than 5000 m in depth in North China. Sis thermostructural layers are recognised in North China, i. e. the mantle, the lower erust with its heat generation ratc of 0. 6 HGU. Oeothermal field is Corresponding to tectonosedimentary divisions in North China, controlling the tectonosedimentation, the evolution of souree rocks and the formation oF the oil/gas pools.展开更多
Dongpu depression is a fault basin at residual-mobility period of Diwa stage, it developed on the strata of the Mesozoie and Pre-Mesozoie. It is one of the important oil/gas- bearing basin during Cenozoie era along th...Dongpu depression is a fault basin at residual-mobility period of Diwa stage, it developed on the strata of the Mesozoie and Pre-Mesozoie. It is one of the important oil/gas- bearing basin during Cenozoie era along the East China. The strueture in Dongpu geodepression is very complex. There exists a strueture pattern with east- and west-depression belts and one central swell belt, it is divided into the southern- and northern-division by Gaopingji (orMeng Ju ) -Xieheng fault.展开更多
In the Yingdong Oil/Gas Field of the Qaidam Basin,multiple suites of oil-gas-water systems overlie each other vertically,making it difficult to accurately identify oil layers from gas layers and calculate gas-oil rati...In the Yingdong Oil/Gas Field of the Qaidam Basin,multiple suites of oil-gas-water systems overlie each other vertically,making it difficult to accurately identify oil layers from gas layers and calculate gas-oil ratio(GOR).Therefore,formation testing and production data,together with conventional logging,NMR and mud logging data were integrated to quantitatively calculate GOR.To tell oil layers from gas layers,conventional logging makes use of the excavation effect of compensated neutron log,NMR makes use of the different relaxation mechanisms of light oil and natural gas in large pores,while mud logging makes use of star chart of gas components established based on available charts and mathematical statistics.In terms of the quantitative calculation of GOR,the area ratio of the star chart of gas components was first used in GOR calculation.The study shows that:(1)conventional logging data has a modest performance in distinguishing oil layers from gas layers due to the impacts of formation pressure,hydrogen index(HI),shale content,borehole conditions and invasion of drilling mud;(2)NMR is quite effective in telling oil layers from gas layers,but cannot be widely used due to its high cost;(3)by contrast,the star chart of gas components is the most effective in differentiating oil layers from gas layers;and(4)the GOR calculated by using the area ratio of star chart has been verified by various data such as formation testing data,production data and liquid production profile.展开更多
基金supported by the National Natural ScienceFoundation of China (No. 41172184)SINOPROBE-08-01SINOPEC
文摘Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migration and aggregation. Based on geological mapping, structural data, and mechanical parameters of rocks, we reconstruct the traces for gas/oil migration and aggregation in Dabashan intra-continental orogen using numerical simulation. The study shows that gas/oil, obviously dominated by late Middle Jurassic-Early Cretaceous paleo-tectonic stress field that is characterized by NE-SW shortening in the Dabashan thrust belt and SW-emanating shortening in its foreland belt, massively migrate from the Dabashan thrust belt to its foreland belt, that is, NE to SW, resulting in the formation of some probable favorable areas for oil/gas mainly along the Tiexi -Wuxi fault, in some superposed structure (e.g., Zhenba , Wanyuan , Huangjinkou , and Tongnanba areas), and in the Zigui Basin. Thus, our study shows that numerical simulation can be effectively applied to study oil/gas migration and aggregation in intra-continental orogen and provided some significant evidences for oil/gas exploration.
文摘This study analyzes the status-quo of the proved oil/gas initially-in-place and its variation trend,the proved undeveloped oil/gas initially-in-place,and the remaining proved technically recoverable reserves(TRR)of oil/gas in China as of 2020 based on statistics.As shown by the results,the proved oil initially-in-place(OIIP),the proved undeveloped OIIP,and the remaining proved TRR of oil in China are mainly distributed in the Bohai Bay,Ordos and Songliao Basins,and those of free gas are mainly in the Ordos,Sichuan,and Tarim Basins.From 2011 to 2020,the largest increment in the proved OIIP,the proved undeveloped OIIP and the remaining proved TRR of oil occurred in the Ordos Basin,followed by the Bohai Bay Basin,while that in the proved gas initially-in-place(GIIP),the proved undeveloped GIIP,and the remaining proved TRR of gas occurred in the Ordos Basin,followed by the Sichuan Basin.In addition,a comprehensive analysis reveals that the petroliferous basins in China with the potential of reserve addition and production growth include the Ordos Basin,the Bohai Bay Basin,the Sichuan Basin,and the Tarim Basin.
基金the National Science and Technology Major Project (2017ZX05005)the National Natural Science Foundations of China (41672123).
文摘Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, China has made remarkable achievements in oil/gas exploration in ultra-deep areas including carbonate and clastic reservoirs. Some (ultra) large-scale oil and gas fields have been discovered. The oil/gas accumulation mechanisms and key technologies of oil/gas reservoir exploration and development are summarized in this study in order to share China’s experiences. Ultra-deep oil/gas originates from numerous sources of hydrocarbons and multiphase charging. Liquid hydrocarbons can form in ultradeep layers due to low geothermal gradients or overpressures, and the natural gas composition in ultra-deep areas is complicated by the reactions between deep hydrocarbons, water, and rock or by the addition of mantle- or crust-sourced gases. These oils/gases are mainly stored in the original highenergy reef/shoal complexes or in sand body sediments. They usually have high original porosity. Secondary pores are often developed by dissolution, dolomitization, and fracturing in the late stage. The early pores have been preserved by retentive diageneses such as the early charging of hydrocarbons. Oil/gas accumulation in ultra-deep areas generally has the characteristics of near-source accumulation and sustained preservation. The effective exploration and development of ultra-deep oil/gas reservoirs depend on the support of key technologies. Use of the latest technologies such as seismic signal acquisition and processing, low porosity and permeability zone prediction, and gas–water identification has enabled the discovery of ultra-deep oil/gas resources. In addition, advanced technologies for drilling, completion, and oil/gas testing have ensured the effective development of these fields.
基金This study was supported by the Natural Science Foundation of China (grant No. 40273034)the Science Foundation of Hongzhou Danzi University.
文摘The static flux chamber method was applied to study natural emissions of methane to the atmosphere in the Luntai fault region of Yakela Condensed Oil/Gas Field in the Tarim Basin, Xinjiang Municipality, northwestern China. Using an online method, which couples together a gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/C/MS), 13^C/12^C ratios of methane in flux chambers were measured and showed that methane gases are liable to migrate from deep oil/gas reservoirs to the surface through fault regions and that a part of the migrated methane, which remains unoxidized can be emitted into the atmosphere. Methane emission rates were found to be highest in the mornings, lowest in the afternoons and then increase gradually in the evenings. Methane emission rates varied dramatically in different locations in the fault region. The highest methane emission rate was 10.96 mg/m^2·d, the lowest 4.38 mg/m^2, and the average 7.55 mg/ m^2·d. The 13^C/12^C ratios of the methane in the flux chambers became heavier as the enclosed methane concentrations increased gradually, which reveals that methane released from the fault region might come from thermogenic methane of the deep condensed oil/gas reservoir.
基金funded by CNSF (No.41173055)and marine department,Sinopec
文摘Natural bitumen is the evolutionary residue of hydrocarbon of sedimentary organic matter. Several kinds of bitumen with different occurrences, including bitumen in source rock, migration bitumen filled in fault, oil-bed bitumen and paleo-reservoir bitumen, are distributed widely in the Dabashan foreland. These kinds of bitumen represent the process of oil/gas formation, migration and accumulation in the region. Bitumen in source rock fiUed in fractures and stylolite and experienced deformation simultaneously together with source rock themselves. It indicated that oil/gas generation and expelling from source rock occurred under normal buried thermal conditions during prototype basin evolution stages prior to orogeny. Occurrences of bitumen in source rock indicated that paleo- reservoir formation conditions existed in the Dabashan foreland. Migration bitumen being widespread in the fault revealed that the fault was the main channel for oil/gas migration, which occurred synchronously with Jurassic foreland deformation. Oil-bed bitumen was the kind of pyrolysis bitumen that distributed in solution pores of reservoir rock in the Dabashan foreland depression, the northeastern Sichuan Basin. Geochemistry of oil-bed bitumen indicated that natural gas that accumulated in the Dabashan foreland depression formed from liquid hydrocarbon by pyrolysis process. However, paleo-reservior bitumen in the Dabashan forleland was the kind of degradation bitumen that formed from liquid hydrocarbon within the paleo-reservior by oxidation, alteration and other secondary changes due to paleo-reservior damage during tectonics in the Dabashan foreland. In combination with the tectonic evolution of the Dabashan foreland, it is proposed that the oil/gas generated, migrated and accumulated to form the paleo-reservoir during the Triassic Indosinian tectonic movement. Jurassic collision orogeny, the Yanshan tectonic movement, led to intracontinental orogeny of the Dabashan area accompanied by geofluid expelling and paleo-reservoir damage in the Dabashan foreland. The present work proposed that there is liquid hydrocarbon exploration potential in the Dabashan foreland, while there are prospects for the existence of natural gas in the Dabashan foreland depression.
基金the National Natural Sci-ence Foundation of China (No. 40273034)the Science Foundation of Hangzhou Dianzi University
文摘A static flux chamber method was applied to study natural emissions of methane into the atmosphere in the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China. Using an online method, which couples a gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/C/MS) together, the 13C/12C ratios of methane in the flux chambers were measured. The results demonstrated that methane gases were liable to migrate from deep oil/gas reservoir to the surface through microseepage and p...
文摘The diversity of sandstone diagenesis mechanisms caused by the complex geological conditions of oil/gas basins in China could hardly be reasonably explained by the traditional concept of burial diagenesis. Three genesis types of thermal diagenesis, tectonic diagenesis and fluid diagenesis are presented on the basis of the dynamic environment of the oil/gas basins and.the controlling factors and mechanisms of sandstone diagenesis. Thermal diagenesis of sandstone reservoirs is related not only to the effect of formation temperature on diagenesis, but also to the significant changes in diagenesis caused by geothermal gradients. The concept of thermal compaction is presented. Thermal compaction becomes weaker with increasing depth and becomes stronger at a higher geothermal gradient. At the same formation temperature, the sandstone porosity in the region with a lower geothermal gradient is e^0.077+0.0042T times higher than that in the region with a higher geothermal gradient. Both sudden and gradual changes are observed in diagenetic evolution caused by structural deformation. Average sandstone compaction increased by 0.1051% for every 1.0MPa increase of lateral tectonic compressional stress, while late tectonic napping helped to preserve a higher porosity of underlying sandstone reservoir. Fluid diagenesis is a general phenomenon. The compaction caused by fluid properties is significant. The coarser the grain size, the stronger the fluid effect on compaction. The greater the burial depth, the weaker the fluid effect on compaction for the specific reservoir lithology and the greater the difference in the fluid effects on compaction between different grain sizes.
基金Project supported by the Scientific Research&Technical Development Project of PetroChina Company Limited“Research and application of key technologies for geology and gas reservoir engineering of underground gas storage”(No.2015E-400201).
文摘Whole-life-cycle integrity management of underground gas storages(UGSs)has been an important link to ensure its long-term safe and efficient operation.At present,the integrity of UGSs in oil/gasfields and its evaluation techniques focus on surface facilities and injection/withdrawal wells,but its geological integrity lacks clear definition and evaluation object and systematic evaluation techniques.In this paper,relevant research achievements werefirstly summarized.Then,the concept of geological integrity with the gas-storage geological body as the evaluation object was put forward,and the evaluation system for the geological integrity of such UGSs was established.Finally,UGS geological integrity evaluation was carried out with the Hutubi Underground Gas Storage in Xinjiang as an example.And the following research results were obtained.First,UGS geological integrity is defined as the integrity degree of each component of a gas-storage geological body to meet operation requirements and fulfill seasonal and emergency peak shaving safely and economically during the operation of a UGS.Its connotation is that reservoir of geological body,caprock,fault and trap can supply the customers with gas continuously and stably and ensure the safe operation of the UGS in its service life.And its core lies in keeping the reliability,safety and economy of natural gas storage in the service life of a UGS.Second,the geological integrity evaluation system is composed of four evaluation techniques,including trap effectiveness,caprock integrity,fault stability and reservoir stability.Third,the evaluation results show that the Hutubi Underground Gas Storage has the potential of peak-shaving capacity enhancement by increasing the maximum operation pressure.In conclusion,the establishment of the geological integrity evaluation system for such UGSs improves the UGS integrity evaluation technique system and plays an instructive and practical role in ensuring the long-term safe and efficient operation of UGSs,increasing the maximum operation pressure and improving the peak shaving capacity.
文摘The geothermal history of North China can be divided into at least four stages, i. c. Archaean (much hisher geothermal) stage, Paleoprotcrozoic (hish geothermal)stage, which resulted in four geotectonic stages (pregeosynehoe, geosyncline, platform and diwa stage) in the region. The geothermal field consists of three subgeothermal fields, theupper subgeothermal field with its depth of less than 2000 m, the middle subgeothermal field ranging from 2000 m to 5000 m in depth and the lower subgeothcrmal field locating at more than 5000 m in depth in North China. Sis thermostructural layers are recognised in North China, i. e. the mantle, the lower erust with its heat generation ratc of 0. 6 HGU. Oeothermal field is Corresponding to tectonosedimentary divisions in North China, controlling the tectonosedimentation, the evolution of souree rocks and the formation oF the oil/gas pools.
文摘Dongpu depression is a fault basin at residual-mobility period of Diwa stage, it developed on the strata of the Mesozoie and Pre-Mesozoie. It is one of the important oil/gas- bearing basin during Cenozoie era along the East China. The strueture in Dongpu geodepression is very complex. There exists a strueture pattern with east- and west-depression belts and one central swell belt, it is divided into the southern- and northern-division by Gaopingji (orMeng Ju ) -Xieheng fault.
文摘In the Yingdong Oil/Gas Field of the Qaidam Basin,multiple suites of oil-gas-water systems overlie each other vertically,making it difficult to accurately identify oil layers from gas layers and calculate gas-oil ratio(GOR).Therefore,formation testing and production data,together with conventional logging,NMR and mud logging data were integrated to quantitatively calculate GOR.To tell oil layers from gas layers,conventional logging makes use of the excavation effect of compensated neutron log,NMR makes use of the different relaxation mechanisms of light oil and natural gas in large pores,while mud logging makes use of star chart of gas components established based on available charts and mathematical statistics.In terms of the quantitative calculation of GOR,the area ratio of the star chart of gas components was first used in GOR calculation.The study shows that:(1)conventional logging data has a modest performance in distinguishing oil layers from gas layers due to the impacts of formation pressure,hydrogen index(HI),shale content,borehole conditions and invasion of drilling mud;(2)NMR is quite effective in telling oil layers from gas layers,but cannot be widely used due to its high cost;(3)by contrast,the star chart of gas components is the most effective in differentiating oil layers from gas layers;and(4)the GOR calculated by using the area ratio of star chart has been verified by various data such as formation testing data,production data and liquid production profile.