针对现有的正交频分享用(OFDM)网络信号接收过程中存在带外杂波扩散严重、信号投影难以匹配以及误码率较高等难题,提出了基于梯度映射机制的子载波OFDM网络信号精确接收算法。首先,通过快速傅里叶变换及其逆变换,并联合插值技术,构建最...针对现有的正交频分享用(OFDM)网络信号接收过程中存在带外杂波扩散严重、信号投影难以匹配以及误码率较高等难题,提出了基于梯度映射机制的子载波OFDM网络信号精确接收算法。首先,通过快速傅里叶变换及其逆变换,并联合插值技术,构建最小均方差预估抑制机制,并采用带通滤波技术对带外杂波进行全频域消除;随后,基于实部及虚部信号的数字特征,构建梯度映射机制,对信号投影点与投影象限进行匹配,降低OFDM网络误码率。仿真实验表明,与当前幅度滤波限制算法(amplitude filter algorithm,AF)、中波带频率抑制算法(wave band frequency suppression algorithm,WBFS)相比,所提算法具有更低的误码率,分别降低了2个、3个量级,以及更高的信号增益强度,在莱斯信道条件下,分别提高了20.5%、41.63%,且功率谱性能与理想状态下的OFDM信号最为接近。所提算法具有理想的信号接收精度与抗衰落性能,具有一定的实际部署价值。展开更多
针对传统算法在正交频分复用(OFDM)系统导频数量较少时误符号率较高的问题,提出一种基于深度学习的OFDM信号检测方法,该算法设计一种信号检测网络,其信号检测网络可以代替传统算法中的信道估计和均衡,主要包含:输入层、双向长短记忆神...针对传统算法在正交频分复用(OFDM)系统导频数量较少时误符号率较高的问题,提出一种基于深度学习的OFDM信号检测方法,该算法设计一种信号检测网络,其信号检测网络可以代替传统算法中的信道估计和均衡,主要包含:输入层、双向长短记忆神经网络(Bidirectional long short memory neural network,BiLSTM)层、全连接层、softmax层以及分类层。首先需要构建BiLSTM,然后利用3GPP TR38.901信道模型下生成的数据对已经构建好的神经网络进行训练,最后则可将训练好的神经网络应用于OFDM系统之中,对整个系统进行信号检测。仿真结果表明,BiLSTM信号检测网络采用的是端到端的方式进行OFDM信号检测,与传统的信号检测方法相比,BiLSTM信号检测网络在误符号率为10^(−3)时,有5~6 dB的性能提升,与同类型的采用端到端的LSTM信号检测网络的算法相比,该算法在误符号率为10^(−3)时,有2~3 dB的性能提升。展开更多
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术在无线通信领域中拥有着重要地位,但OFDM系统中存在子载波间干扰和较高的峰均比的缺点,使得OFDM系统在信号检测方面的表现不太理想。针对OFDM系统中信号检测性能较...正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术在无线通信领域中拥有着重要地位,但OFDM系统中存在子载波间干扰和较高的峰均比的缺点,使得OFDM系统在信号检测方面的表现不太理想。针对OFDM系统中信号检测性能较差的问题,提出一种基于自归一化网络的索引调制(Index Modulation for Self Normalizing Network,IM-SNN)算法,并采用4QAM、8QAM、16QAM的调制方式验证系统的信号检测性能。结果表明,所提出的算法提高了接收端解调信号的性能,有效增强了信号检测的能力,并表现出优于传统技术中最大似然检测(Maximum Likelihood Detection,MLD)算法及现有技术中基于深度神经网络的索引调制(Index Modulation in Deep Neural Network,IM-DNN)算法的系统误码率及网络损失。在3种调制方式下,性能改善0.6~8 dB。展开更多
信号调制识别技术在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中有着重要的应用。然而,在单多载波识别方面,大多数传统方法为模型驱动,需要对信号进行预处理。另外其适应信道环境单一,在复杂信道环境时识别...信号调制识别技术在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中有着重要的应用。然而,在单多载波识别方面,大多数传统方法为模型驱动,需要对信号进行预处理。另外其适应信道环境单一,在复杂信道环境时识别性能较差。针对以上问题,提出了一种基于改进ResNet深度学习网络的调制识别方法(Improved ResNet based Modulation Classification method,IRMC)。IRMC通过对同向正交IQ序列进行训练,自主实现了单多载波信号的有效区分。仿真实验表明,单多载波识别方面,IRMC在复杂莱斯多径信道上相比于传统方法在85%识别率下能够达到10 dB的信噪比增益,证明提出的方法是有效可行的。展开更多
文摘针对现有的正交频分享用(OFDM)网络信号接收过程中存在带外杂波扩散严重、信号投影难以匹配以及误码率较高等难题,提出了基于梯度映射机制的子载波OFDM网络信号精确接收算法。首先,通过快速傅里叶变换及其逆变换,并联合插值技术,构建最小均方差预估抑制机制,并采用带通滤波技术对带外杂波进行全频域消除;随后,基于实部及虚部信号的数字特征,构建梯度映射机制,对信号投影点与投影象限进行匹配,降低OFDM网络误码率。仿真实验表明,与当前幅度滤波限制算法(amplitude filter algorithm,AF)、中波带频率抑制算法(wave band frequency suppression algorithm,WBFS)相比,所提算法具有更低的误码率,分别降低了2个、3个量级,以及更高的信号增益强度,在莱斯信道条件下,分别提高了20.5%、41.63%,且功率谱性能与理想状态下的OFDM信号最为接近。所提算法具有理想的信号接收精度与抗衰落性能,具有一定的实际部署价值。
文摘针对传统算法在正交频分复用(OFDM)系统导频数量较少时误符号率较高的问题,提出一种基于深度学习的OFDM信号检测方法,该算法设计一种信号检测网络,其信号检测网络可以代替传统算法中的信道估计和均衡,主要包含:输入层、双向长短记忆神经网络(Bidirectional long short memory neural network,BiLSTM)层、全连接层、softmax层以及分类层。首先需要构建BiLSTM,然后利用3GPP TR38.901信道模型下生成的数据对已经构建好的神经网络进行训练,最后则可将训练好的神经网络应用于OFDM系统之中,对整个系统进行信号检测。仿真结果表明,BiLSTM信号检测网络采用的是端到端的方式进行OFDM信号检测,与传统的信号检测方法相比,BiLSTM信号检测网络在误符号率为10^(−3)时,有5~6 dB的性能提升,与同类型的采用端到端的LSTM信号检测网络的算法相比,该算法在误符号率为10^(−3)时,有2~3 dB的性能提升。
文摘正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术在无线通信领域中拥有着重要地位,但OFDM系统中存在子载波间干扰和较高的峰均比的缺点,使得OFDM系统在信号检测方面的表现不太理想。针对OFDM系统中信号检测性能较差的问题,提出一种基于自归一化网络的索引调制(Index Modulation for Self Normalizing Network,IM-SNN)算法,并采用4QAM、8QAM、16QAM的调制方式验证系统的信号检测性能。结果表明,所提出的算法提高了接收端解调信号的性能,有效增强了信号检测的能力,并表现出优于传统技术中最大似然检测(Maximum Likelihood Detection,MLD)算法及现有技术中基于深度神经网络的索引调制(Index Modulation in Deep Neural Network,IM-DNN)算法的系统误码率及网络损失。在3种调制方式下,性能改善0.6~8 dB。
文摘信号调制识别技术在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中有着重要的应用。然而,在单多载波识别方面,大多数传统方法为模型驱动,需要对信号进行预处理。另外其适应信道环境单一,在复杂信道环境时识别性能较差。针对以上问题,提出了一种基于改进ResNet深度学习网络的调制识别方法(Improved ResNet based Modulation Classification method,IRMC)。IRMC通过对同向正交IQ序列进行训练,自主实现了单多载波信号的有效区分。仿真实验表明,单多载波识别方面,IRMC在复杂莱斯多径信道上相比于传统方法在85%识别率下能够达到10 dB的信噪比增益,证明提出的方法是有效可行的。