The corrosion performance of oxide dispersion strengthened(ODS)steel is crucial for SCWR application.Machine learning(ML)models were established to predict the mass gain of ODS steels under corrosion conditions(i.e.,s...The corrosion performance of oxide dispersion strengthened(ODS)steel is crucial for SCWR application.Machine learning(ML)models were established to predict the mass gain of ODS steels under corrosion conditions(i.e.,supercritical water),thereby evaluating their corrosion resistance.The grain and particle morphologies and crystal and interface structures of nanoparticles of six ODS steels were studied by transmission electron microscopy,scanning transmission electron microscopy,and high-resolution transmission electron microscopy.Among six ML models employed,the LightGBM(LGBM)model shows the highest accuracy(root mean square error of 43.18 mg/dm^(2) and 50.21 mg/dm^(2),mean absolute error of 25.91 mg/dm^(2) and 27.82 mg/dm^(2),and coefficient of determination R^(2) of 0.97 and 0.96 for training set and testing set,respectively)in predicting the mass gain of ODS steels.The LGBM feature importance coefficients were also applied to denote the degree of the feature on corrosion resistance.For microstructural features,the parameters that greatly influence corrosion resistance are inter-particle spacing and grain diameter,with importance scores of 73 and 63,respectively.Moreover,there is a strong synergistic influence between Cr and Al on the corrosion resistance of ODS steels.Developing this efficient and accurate LGBM model not only enhances the understanding of ODS steel corrosion mechanisms but also provides valuable insights for the targeted optimization and design of high-performance ODS alloys.展开更多
Laser powder bed fusion(LPBF)is a widely used and well-developed approach in additive manufacturing.To meet the high material performance requirements of fourth-generation nuclear power reactors,the combination of LPB...Laser powder bed fusion(LPBF)is a widely used and well-developed approach in additive manufacturing.To meet the high material performance requirements of fourth-generation nuclear power reactors,the combination of LPBF processing with oxide dispersion strengthening(ODS)is currently of interest for the design and development of new materials.In this approach,nanoscale Y_(2)O_(3)particles are dispersed into the feeding powders to produce LPBF-ODS materials.Oxygen exposure and the introduction of oxygen into the solvation cell during LPBF are usually considered as detrimental processes that are impossible to eliminate completely.However,our understanding of these unavoidable processes is still limited.In this study,we developed a new LPBF-ODS design approach based on in situ oxygen content regulation during the LPBF process.The oxygen content of the environmental chamber was artificially adjusted using an online monitoring system to activate reactions between oxygen and the metallic elements for the in situ formation of dispersed oxide particles.Four batches of LPBF 304 L stainless steel samples were successfully processed under different oxygen levels to investigate the reinforcement effect of in situ chemical alloying.The results show that dispersed oxide particles were formed with an average nanoscale size of approximately 46 nm through the LPBF in situ alloying approach.The increase in the number density of oxide particles to 11.4 particles∕μm^(2)as the oxygen content increased played a role in refining and stabilizing the cellular structure.The yield strength of the in situ alloyed ODS material was enhanced(to up to~675 MPa)while its ductility was not significantly degraded(elongation of up to~39%).These tensile properties are competitive within the ranges reported for ODS alloys prepared by mechanical alloying.The main mechanisms for yield strength enhancement through interactions between nanoscale oxide particles and dislocation entanglement cells were analyzed.This study provides a new approach for the future preparation of high-performance LPBF-ODS alloys.展开更多
To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and agi...To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and aging treatments.A 50 kg ingot was successfully prepared,highlighting the scalability of this innovative process.Microstructural analysis revealed a predominantly lath martensite matrix with a small amount of ferrite in the hot-forged ODS steel,without oxide particle aggregation.Aging at 750℃ resulted in the formation of sub-micron-sized Cr_(23)C_(6) particles at grain boundaries and martensitic lath interfaces,accompanied by a high-density(7.64×1023 m^(-3))nano-scale(~6 nm)Y-Si-O complex oxides after 25 h.Additionally,the hot-forged sample exhibited a high yield strength(871 MPa)but limited ductility(5.0%).Aging treatments led to an increase in ductility but a decrease in yield strength.Notably,prolonged aging maintained the strength level of steels while enhancing ductility,with a 23.3% total elongation observed after 25 h.The novel ZMPP method,preparing high-quality ODS steels with uniform microstructure and good mechanical properties,provided a new avenue for large-scale production of ODS steels.展开更多
The hot deformation behaviors of nickel-based oxide dispersion strengthened(ODS)superalloys fabricated by mechanical alloying(MA)and hot extrusion(HEX)were investigated,the hot compression tests were performed to obta...The hot deformation behaviors of nickel-based oxide dispersion strengthened(ODS)superalloys fabricated by mechanical alloying(MA)and hot extrusion(HEX)were investigated,the hot compression tests were performed to obtain true stress-true strain curves,the influence of strain rate and temperature connected with the microstructure evolution was analyzed,and the processing map and microstructure proposed at different strain levels was used to select its hot working parameters.The results illustrated that hot working conditions,especially the temperature,strongly influenced the grain structure.Specifi-cally,deforming under high temperatures and low strain rate conditions enhances dynamic softening via dynamic recovery(DRV),dynamic recrystallization(DRX),and grain growth to consume the stored strain energy.In addition,the size and morphology of nanoparticles are not significantly changed before and after deformation,the nanoparticles and the matrix still maintain a good interface combination,and no interfacial mismatch such as nanosvoids between the nanoparticle and matrix is detected due to their outstanding interfacial binding ability and excellent ductility of matrix.展开更多
A new Ni+Zr co-alloyed FeCrAl-ODS(oxide-dispersion-strengthened)ferritic alloy was fabricated by ball-milling and hot-isostatic-pressing.Using electron microscopy and atom probe tomography,the dispersive formation of ...A new Ni+Zr co-alloyed FeCrAl-ODS(oxide-dispersion-strengthened)ferritic alloy was fabricated by ball-milling and hot-isostatic-pressing.Using electron microscopy and atom probe tomography,the dispersive formation of high density core-shelled nano-particles of various sizes was confirmed with a common B2-NiAl shell.Among which,median-sized nano-particles(20-50 nm)typically have an Y_(4)Al_(2)O_(9)nano-core of<~20 nm,ultra-fine nano-particles(<~20)nm have an Y_(4)Zr_(3)O_(12)nano-core of<~10 nm,and larger-sized nano-particles(50-100 nm)incorporate an ultra-fine Y_(4)Al_(2)O_(9)nano-core and a few ultra-fine Y_(4)Zr_(3)O_(12)nano-oxides.All these nano-phases were highly coherent with the ferritic matrix.No large Y--Al-O nano-oxides were formed.The total number density of ultra-fine nano-particles was estimated as~2×10^(23)m^(-3)with a mean size of 6.3 nm only,and accordingly,the new alloy achieved an excellent combination of strength and ductility at high temperatures.展开更多
基金sponsored by the National Natural Science Foundation of China(Grants Nos.52171004,52471066,and 51871034).
文摘The corrosion performance of oxide dispersion strengthened(ODS)steel is crucial for SCWR application.Machine learning(ML)models were established to predict the mass gain of ODS steels under corrosion conditions(i.e.,supercritical water),thereby evaluating their corrosion resistance.The grain and particle morphologies and crystal and interface structures of nanoparticles of six ODS steels were studied by transmission electron microscopy,scanning transmission electron microscopy,and high-resolution transmission electron microscopy.Among six ML models employed,the LightGBM(LGBM)model shows the highest accuracy(root mean square error of 43.18 mg/dm^(2) and 50.21 mg/dm^(2),mean absolute error of 25.91 mg/dm^(2) and 27.82 mg/dm^(2),and coefficient of determination R^(2) of 0.97 and 0.96 for training set and testing set,respectively)in predicting the mass gain of ODS steels.The LGBM feature importance coefficients were also applied to denote the degree of the feature on corrosion resistance.For microstructural features,the parameters that greatly influence corrosion resistance are inter-particle spacing and grain diameter,with importance scores of 73 and 63,respectively.Moreover,there is a strong synergistic influence between Cr and Al on the corrosion resistance of ODS steels.Developing this efficient and accurate LGBM model not only enhances the understanding of ODS steel corrosion mechanisms but also provides valuable insights for the targeted optimization and design of high-performance ODS alloys.
基金supported by the National Natural Science Foundation of China(Nos.U22B2067 and 52073176)。
文摘Laser powder bed fusion(LPBF)is a widely used and well-developed approach in additive manufacturing.To meet the high material performance requirements of fourth-generation nuclear power reactors,the combination of LPBF processing with oxide dispersion strengthening(ODS)is currently of interest for the design and development of new materials.In this approach,nanoscale Y_(2)O_(3)particles are dispersed into the feeding powders to produce LPBF-ODS materials.Oxygen exposure and the introduction of oxygen into the solvation cell during LPBF are usually considered as detrimental processes that are impossible to eliminate completely.However,our understanding of these unavoidable processes is still limited.In this study,we developed a new LPBF-ODS design approach based on in situ oxygen content regulation during the LPBF process.The oxygen content of the environmental chamber was artificially adjusted using an online monitoring system to activate reactions between oxygen and the metallic elements for the in situ formation of dispersed oxide particles.Four batches of LPBF 304 L stainless steel samples were successfully processed under different oxygen levels to investigate the reinforcement effect of in situ chemical alloying.The results show that dispersed oxide particles were formed with an average nanoscale size of approximately 46 nm through the LPBF in situ alloying approach.The increase in the number density of oxide particles to 11.4 particles∕μm^(2)as the oxygen content increased played a role in refining and stabilizing the cellular structure.The yield strength of the in situ alloyed ODS material was enhanced(to up to~675 MPa)while its ductility was not significantly degraded(elongation of up to~39%).These tensile properties are competitive within the ranges reported for ODS alloys prepared by mechanical alloying.The main mechanisms for yield strength enhancement through interactions between nanoscale oxide particles and dislocation entanglement cells were analyzed.This study provides a new approach for the future preparation of high-performance LPBF-ODS alloys.
基金financially supported by the National Natural Science Foundation of China(Nos.52271034,52301058 and 52471042)the National MCF Energy R&D Program of China(No.2018YFE0306102)+1 种基金the China Postdoctoral Science Foundation(No.2023M732183)the Postdoctoral Fellowship Program of CPSF(No.GZB20230399).
文摘To develop a melting-based larger-scale fabrication process for oxide dispersion strengthened(ODS)steel,this study proposed a method of zone melting with built-in precursor powder(ZMPP),followed by hot forging and aging treatments.A 50 kg ingot was successfully prepared,highlighting the scalability of this innovative process.Microstructural analysis revealed a predominantly lath martensite matrix with a small amount of ferrite in the hot-forged ODS steel,without oxide particle aggregation.Aging at 750℃ resulted in the formation of sub-micron-sized Cr_(23)C_(6) particles at grain boundaries and martensitic lath interfaces,accompanied by a high-density(7.64×1023 m^(-3))nano-scale(~6 nm)Y-Si-O complex oxides after 25 h.Additionally,the hot-forged sample exhibited a high yield strength(871 MPa)but limited ductility(5.0%).Aging treatments led to an increase in ductility but a decrease in yield strength.Notably,prolonged aging maintained the strength level of steels while enhancing ductility,with a 23.3% total elongation observed after 25 h.The novel ZMPP method,preparing high-quality ODS steels with uniform microstructure and good mechanical properties,provided a new avenue for large-scale production of ODS steels.
基金supported by supported by the National Natu-ral Science Foundation of China(No.52271177)the Leading Tal-ents Project of Scientific and Technological Innovation in Hunan Province(No.2021RC4036)the Natural Science Foundation of Hu-nan Province(Nos.2023JJ50172 and 2020JJ6069).
文摘The hot deformation behaviors of nickel-based oxide dispersion strengthened(ODS)superalloys fabricated by mechanical alloying(MA)and hot extrusion(HEX)were investigated,the hot compression tests were performed to obtain true stress-true strain curves,the influence of strain rate and temperature connected with the microstructure evolution was analyzed,and the processing map and microstructure proposed at different strain levels was used to select its hot working parameters.The results illustrated that hot working conditions,especially the temperature,strongly influenced the grain structure.Specifi-cally,deforming under high temperatures and low strain rate conditions enhances dynamic softening via dynamic recovery(DRV),dynamic recrystallization(DRX),and grain growth to consume the stored strain energy.In addition,the size and morphology of nanoparticles are not significantly changed before and after deformation,the nanoparticles and the matrix still maintain a good interface combination,and no interfacial mismatch such as nanosvoids between the nanoparticle and matrix is detected due to their outstanding interfacial binding ability and excellent ductility of matrix.
基金This work was financially supported by the National MCF Energy R&D Program of China(No.2018YFE0306100).The computational resources at Hefei Advanced Computing Center and the High Performance Computing Center of Central South University are also highly appreciated.
文摘A new Ni+Zr co-alloyed FeCrAl-ODS(oxide-dispersion-strengthened)ferritic alloy was fabricated by ball-milling and hot-isostatic-pressing.Using electron microscopy and atom probe tomography,the dispersive formation of high density core-shelled nano-particles of various sizes was confirmed with a common B2-NiAl shell.Among which,median-sized nano-particles(20-50 nm)typically have an Y_(4)Al_(2)O_(9)nano-core of<~20 nm,ultra-fine nano-particles(<~20)nm have an Y_(4)Zr_(3)O_(12)nano-core of<~10 nm,and larger-sized nano-particles(50-100 nm)incorporate an ultra-fine Y_(4)Al_(2)O_(9)nano-core and a few ultra-fine Y_(4)Zr_(3)O_(12)nano-oxides.All these nano-phases were highly coherent with the ferritic matrix.No large Y--Al-O nano-oxides were formed.The total number density of ultra-fine nano-particles was estimated as~2×10^(23)m^(-3)with a mean size of 6.3 nm only,and accordingly,the new alloy achieved an excellent combination of strength and ductility at high temperatures.