期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于OCkNN+ENN的过采样算法研究
被引量:
1
1
作者
张爱民
于化龙
《计算机与数字工程》
2024年第5期1275-1281,1330,共8页
类不平衡学习是机器学习领域热点问题之一。在类别不平衡学习方法中,SMOTE被认为是其中的一个基准算法。虽然SMOTE算法在绝大多数的类不平衡数据集上表现良好,但它也存在一些问题,如会产生噪声干扰和噪声传播。基于对SMOTE改进算法的研...
类不平衡学习是机器学习领域热点问题之一。在类别不平衡学习方法中,SMOTE被认为是其中的一个基准算法。虽然SMOTE算法在绝大多数的类不平衡数据集上表现良好,但它也存在一些问题,如会产生噪声干扰和噪声传播。基于对SMOTE改进算法的研究,提出了一种更加鲁棒和通用的算法:ONE-SMOTE。研究发现:使用ENN进行数据清洗,可以很好地消除数据噪声,使用基于KNN的一类分类器(OCkNN)可以探测样本空间的相对密度分布信息,并精确定位每个样本的相对密度位置以及边界。基于样本位置信息进行过采样可以很好地保持原始样本空间的密度分布。实验结果表明:该算法能有效提高数据分类的准确性。
展开更多
关键词
类不平衡学习
SMOTE
ENN
ocknn
相对密度分布信息
在线阅读
下载PDF
职称材料
题名
基于OCkNN+ENN的过采样算法研究
被引量:
1
1
作者
张爱民
于化龙
机构
江苏科技大学计算机学院
出处
《计算机与数字工程》
2024年第5期1275-1281,1330,共8页
基金
国家自然科学基金项目(编号:62176107)
江苏省自然科学基金项目(编号:BK20191457)资助。
文摘
类不平衡学习是机器学习领域热点问题之一。在类别不平衡学习方法中,SMOTE被认为是其中的一个基准算法。虽然SMOTE算法在绝大多数的类不平衡数据集上表现良好,但它也存在一些问题,如会产生噪声干扰和噪声传播。基于对SMOTE改进算法的研究,提出了一种更加鲁棒和通用的算法:ONE-SMOTE。研究发现:使用ENN进行数据清洗,可以很好地消除数据噪声,使用基于KNN的一类分类器(OCkNN)可以探测样本空间的相对密度分布信息,并精确定位每个样本的相对密度位置以及边界。基于样本位置信息进行过采样可以很好地保持原始样本空间的密度分布。实验结果表明:该算法能有效提高数据分类的准确性。
关键词
类不平衡学习
SMOTE
ENN
ocknn
相对密度分布信息
Keywords
class imbalance learning
SMOTE
ENN
ocknn
relative density distribution information
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于OCkNN+ENN的过采样算法研究
张爱民
于化龙
《计算机与数字工程》
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部