期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于OCkNN+ENN的过采样算法研究 被引量:1
1
作者 张爱民 于化龙 《计算机与数字工程》 2024年第5期1275-1281,1330,共8页
类不平衡学习是机器学习领域热点问题之一。在类别不平衡学习方法中,SMOTE被认为是其中的一个基准算法。虽然SMOTE算法在绝大多数的类不平衡数据集上表现良好,但它也存在一些问题,如会产生噪声干扰和噪声传播。基于对SMOTE改进算法的研... 类不平衡学习是机器学习领域热点问题之一。在类别不平衡学习方法中,SMOTE被认为是其中的一个基准算法。虽然SMOTE算法在绝大多数的类不平衡数据集上表现良好,但它也存在一些问题,如会产生噪声干扰和噪声传播。基于对SMOTE改进算法的研究,提出了一种更加鲁棒和通用的算法:ONE-SMOTE。研究发现:使用ENN进行数据清洗,可以很好地消除数据噪声,使用基于KNN的一类分类器(OCkNN)可以探测样本空间的相对密度分布信息,并精确定位每个样本的相对密度位置以及边界。基于样本位置信息进行过采样可以很好地保持原始样本空间的密度分布。实验结果表明:该算法能有效提高数据分类的准确性。 展开更多
关键词 类不平衡学习 SMOTE ENN ocknn 相对密度分布信息
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部