The recent SARS-CoV-2 pandemic renewed interest in other previously discovered human coronaviruses—the non-severe acute respiratory syndrome human coronavirus (non-SARS hCoVs) and this study is a starting point for a...The recent SARS-CoV-2 pandemic renewed interest in other previously discovered human coronaviruses—the non-severe acute respiratory syndrome human coronavirus (non-SARS hCoVs) and this study is a starting point for a closer investigation of those. With the pandemic behind us we believe it to be important to also examine the current and past respiratory pathogen landscape in the patient population in our care. Therefore, 954 nasopharyngeal swabs of patients with respiratory diseases collected between October 2018 and March 2020 were tested against the pathogens Mycoplasma pneumoniae, Bordetella pertussis, Influenza A and virus, Human metapneumovirus, respiratory syncytial virus, Parainfluenza virus, human Adenovirus and Polyoma virus BK/JC. Swabs negative against these pathogens were further tested for OC43 and 229E by RT-qPCR. Human coronaviruses 229E and OC43 were proven as the causative agents in a considerable number of cases, confirmed by PCR. Overall, our results show that those two non-SARS hCoVs were responsible for 13.9% (11 of 79) of infections with flu-like symptoms of unknown etiology in the study area. In the subsequent seroprevalence study, it was shown that the seroprevalence rate of IgG antibodies against 229E and OC43 was over 50%, indicating that a big part of the population in our study area has been in contact with these non-SARS-CoVs and has built the specific humoral immune response accordingly.展开更多
This study explores the antiviral properties of high-voltage low-frequency electric field exposure on the replication of human viruses, including Herpes Simplex Virus type 1 (HSV-1), Human Coronavirus OC43 (HCoV OC43)...This study explores the antiviral properties of high-voltage low-frequency electric field exposure on the replication of human viruses, including Herpes Simplex Virus type 1 (HSV-1), Human Coronavirus OC43 (HCoV OC43), and Influenza A virus (A H1N1). Using the HealectricsTM device (model S02), which operates by applying high-voltage direct current (30 - 50 kV) with a polarity change frequency of ~0.2 Hz, we investigated the impact on viral infectivity and host cell viability. Virus cultures were exposed to electric fields during different stages: virion adsorption (0 - 1 hour), intracellular replication (1 - 8 hours), and both stages. Viral infectivity was assessed through titration, and cytotoxic effects were evaluated using MTT assays. Electric field exposure significantly reduced viral infectivity, particularly during the combined sorption and replication stages, with up to a 90% decrease in viral activity. Among the viruses tested, HCoV OC43 showed the least sensitivity, with a reduction in viral activity by a factor of 5. Comparisons revealed statistically significant reductions for influenza and herpes viruses, and a trend towards significance for HCoV OC43. The electric field treatment did not significantly affect the viability of Vero and MDCK cells, indicating the method’s safety. Our findings suggest that high-voltage low-frequency electric fields can effectively reduce viral infectivity and may serve as a potential therapeutic and preventive measure against a wide range of membrane-bound viruses, including SARS-CoV-2.展开更多
文摘The recent SARS-CoV-2 pandemic renewed interest in other previously discovered human coronaviruses—the non-severe acute respiratory syndrome human coronavirus (non-SARS hCoVs) and this study is a starting point for a closer investigation of those. With the pandemic behind us we believe it to be important to also examine the current and past respiratory pathogen landscape in the patient population in our care. Therefore, 954 nasopharyngeal swabs of patients with respiratory diseases collected between October 2018 and March 2020 were tested against the pathogens Mycoplasma pneumoniae, Bordetella pertussis, Influenza A and virus, Human metapneumovirus, respiratory syncytial virus, Parainfluenza virus, human Adenovirus and Polyoma virus BK/JC. Swabs negative against these pathogens were further tested for OC43 and 229E by RT-qPCR. Human coronaviruses 229E and OC43 were proven as the causative agents in a considerable number of cases, confirmed by PCR. Overall, our results show that those two non-SARS hCoVs were responsible for 13.9% (11 of 79) of infections with flu-like symptoms of unknown etiology in the study area. In the subsequent seroprevalence study, it was shown that the seroprevalence rate of IgG antibodies against 229E and OC43 was over 50%, indicating that a big part of the population in our study area has been in contact with these non-SARS-CoVs and has built the specific humoral immune response accordingly.
文摘This study explores the antiviral properties of high-voltage low-frequency electric field exposure on the replication of human viruses, including Herpes Simplex Virus type 1 (HSV-1), Human Coronavirus OC43 (HCoV OC43), and Influenza A virus (A H1N1). Using the HealectricsTM device (model S02), which operates by applying high-voltage direct current (30 - 50 kV) with a polarity change frequency of ~0.2 Hz, we investigated the impact on viral infectivity and host cell viability. Virus cultures were exposed to electric fields during different stages: virion adsorption (0 - 1 hour), intracellular replication (1 - 8 hours), and both stages. Viral infectivity was assessed through titration, and cytotoxic effects were evaluated using MTT assays. Electric field exposure significantly reduced viral infectivity, particularly during the combined sorption and replication stages, with up to a 90% decrease in viral activity. Among the viruses tested, HCoV OC43 showed the least sensitivity, with a reduction in viral activity by a factor of 5. Comparisons revealed statistically significant reductions for influenza and herpes viruses, and a trend towards significance for HCoV OC43. The electric field treatment did not significantly affect the viability of Vero and MDCK cells, indicating the method’s safety. Our findings suggest that high-voltage low-frequency electric fields can effectively reduce viral infectivity and may serve as a potential therapeutic and preventive measure against a wide range of membrane-bound viruses, including SARS-CoV-2.