INTRODUCTION.Crustal velocity model is crucial for describing the subsurface composition and structure,and has significant implications in offshore oil and gas exploration and marine geophysical engineering(Xie et al....INTRODUCTION.Crustal velocity model is crucial for describing the subsurface composition and structure,and has significant implications in offshore oil and gas exploration and marine geophysical engineering(Xie et al.,2024).Currently,travel time tomography is the most commonly used method for velocity modeling based on ocean bottom seismometer(OBS)data(Zhang et al.,2023;Sambolian et al.,2021).This method usually assumes that the sub-seafloor structure is layered,and therefore faces challenges in high-precision modeling with strong lateral discontinuities.展开更多
基金financially supported by the National Key R&D Program of China(No.2023YFF0803404)the Zhejiang Provincial Natural Science Foundation(No.LY23D040001)+4 种基金the Open Research Fund of Key Laboratory of Engineering Geophysical Prospecting and Detection of Chinese Geophysical Society(No.CJ2021GB01)the Open Re-search Fund of Changjiang River Scientific Research Institute(No.CKWV20221011/KY)the ZhouShan Science and Technology Project(No.2023C81010)the National Natural Science Foundation of China(No.41904100)supported by Chinese Natural Science Foundation Open Research Cruise(Cruise No.NORC2019–08)。
文摘INTRODUCTION.Crustal velocity model is crucial for describing the subsurface composition and structure,and has significant implications in offshore oil and gas exploration and marine geophysical engineering(Xie et al.,2024).Currently,travel time tomography is the most commonly used method for velocity modeling based on ocean bottom seismometer(OBS)data(Zhang et al.,2023;Sambolian et al.,2021).This method usually assumes that the sub-seafloor structure is layered,and therefore faces challenges in high-precision modeling with strong lateral discontinuities.