期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
OBDA在极限与配合知识库中的应用
1
作者 黄星 钟艳如 《桂林电子科技大学学报》 2014年第6期484-489,共6页
针对传统极限与配合本体知识库构建中工作量过大和数据与本体不一致的问题,将基于本体的数据访问(OBDA)引入极限与配合知识库中,使用Web本体语言OWL 2 QL构建极限与配合本体TBox,构建本体与数据库的映射集将数据库中数据映射为极限与配... 针对传统极限与配合本体知识库构建中工作量过大和数据与本体不一致的问题,将基于本体的数据访问(OBDA)引入极限与配合知识库中,使用Web本体语言OWL 2 QL构建极限与配合本体TBox,构建本体与数据库的映射集将数据库中数据映射为极限与配合本体的个体集,使用本体的实时查询访问数据库中数据,在减少本体构建工作量的同时,确保了数据与本体一致且易于共享和重用。工程实例验证了在极限与配合知识库中应用OBDA的可行性和有效性。 展开更多
关键词 极限与配合 obda 本体 知识库
在线阅读 下载PDF
基于本体的极限与配合数据访问
2
作者 黄星 钟艳如 +1 位作者 黄美发 覃裕初 《计算机系统应用》 2014年第10期16-23,共8页
为使极限与配合知识既能满足知识重用和语义互操作的需求,又具有较高的数据访问效率,以共享概念和数据存储两层结构组织极限与配合知识.以极限与配合本体作为共享概念层,以关系型数据库存储极限与配合数据,以映射连接极限与配合本体和... 为使极限与配合知识既能满足知识重用和语义互操作的需求,又具有较高的数据访问效率,以共享概念和数据存储两层结构组织极限与配合知识.以极限与配合本体作为共享概念层,以关系型数据库存储极限与配合数据,以映射连接极限与配合本体和数据库,从而可通过极限与配合本体直接访问极限与配合数据.在满足极限与配合知识重用和语义互操作需求的同时,保证了极限与配合数据的访问效率.通过原型系统和基于该系统的工程实例,验证了基于本体的极限与配合数据访问的可行性和有效性. 展开更多
关键词 极限与配合 描述逻辑 obda 本体 数据库
在线阅读 下载PDF
Predicting an Optimal Virtual Data Model for Uniform Access to Large Heterogeneous Data
3
作者 Chahrazed B.Bachir Belmehdi Abderrahmane Khiat Nabil Keskes 《Data Intelligence》 EI 2024年第2期504-530,共27页
The growth of generated data in the industry requires new efficient big data integration approaches for uniform data access by end-users to perform better business operations.Data virtualization systems,including Onto... The growth of generated data in the industry requires new efficient big data integration approaches for uniform data access by end-users to perform better business operations.Data virtualization systems,including Ontology-Based Data Access(ODBA)query data on-the-fly against the original data sources without any prior data materialization.Existing approaches by design use a fixed model e.g.,TABULAR as the only Virtual Data Model-a uniform schema built on-the-fly to load,transform,and join relevant data.While other data models,such as GRAPH or DOCUMENT,are more flexible and,thus,can be more suitable for some common types of queries,such as join or nested queries.Those queries are hard to predict because they depend on many criteria,such as query plan,data model,data size,and operations.To address the problem of selecting the optimal virtual data model for queries on large datasets,we present a new approach that(1)builds on the principal of OBDA to query and join large heterogeneous data in a distributed manner and(2)calls a deep learning method to predict the optimal virtual data model using features extracted from SPARQL queries.OPTIMA-implementation of our approach currently leverages state-of-the-art Big Data technologies,Apache-Spark and Graphx,and implements two virtual data models,GRAPH and TABULAR,and supports out-of-the-box five data sources models:property graph,document-based,e.g.,wide-columnar,relational,and tabular,stored in Neo4j,MongoDB,Cassandra,MySQL,and CSV respectively.Extensive experiments show that our approach is returning the optimal virtual model with an accuracy of 0.831,thus,a reduction in query execution time of over 40%for the tabular model selection and over 30%for the graph model selection. 展开更多
关键词 Data Virtualization Big Data obda Deep Learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部