期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
THE ELECTROCATALYTIC ACTIVITY OF NiCo2O4 FOR THE OXYGEN EVOLUTION REACTION
1
作者 Peng Li CHENG Jian Min ZHANG Qiu Zhi SHI Chang Chun YANG Department of Chemistry,Zhengzhou University,Zhengzhou,450052 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第9期821-824,共4页
A spinel oxide NiCo204 prepared by thermal decomposition is of very high activity for the oxygen evolution reaction(OER)in alkaline solution.The oxygen evolution overpotential on NiCo204 is 0.252-0.262V in 10 M NaOH s... A spinel oxide NiCo204 prepared by thermal decomposition is of very high activity for the oxygen evolution reaction(OER)in alkaline solution.The oxygen evolution overpotential on NiCo204 is 0.252-0.262V in 10 M NaOH solution at 343K and current density 100 mAcm^(-2). 展开更多
关键词 OEA IM CO OER THE ELECTROCATALYTIC ACTIVITY OF NiCo2O4 FOR THE OXYGEN evolution reaction NI
在线阅读 下载PDF
2020 Roadmap on gas-involved photo-and electro-catalysis 被引量:1
2
作者 Yulu Yang Yang Tang +30 位作者 Haomin Jiang Yongmei Chen Pingyu Wan Maohong Fan Rongrong Zhang Sana Ullah Lun Pan Ji-Jun Zou Mengmeng Lao Wenping Sun Chao Yang Gengfeng Zheng Qiling Peng Ting Wang Yonglan Luo Xuping Sun Alexander S.Konev Oleg V.Levin Panagiotis Lianos Zhuofeng Hu Zhurui Shen Qinglan Zhao Ying Wang Nadia Todorova Christos Trapalis Matthew V.Sheridan Haipeng Wang Ling Zhang Songmei Sun Wenzhong Wang Jianmin Ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2089-2109,共21页
Green reactions not only provide us chemical products without any pollution,but also offer us the viable technology to realize difficult tasks in normal conditions.Photo-,photoelectro-,and electrocatalytic reactions a... Green reactions not only provide us chemical products without any pollution,but also offer us the viable technology to realize difficult tasks in normal conditions.Photo-,photoelectro-,and electrocatalytic reactions are indeed powerful tools to help us to embrace bright future.Especially,some gas-involved reactions are extremely useful to change our life environments from energy systems to liquid fuels and cost-effective products,such as H2 evolution(H2 production),02 evolution/reduction,CO2 reduction,N2 reduction(or N2 fixation) reactions.We can provide fuel cells clean H2 for electric vehicles from H2 evolution reaction(HER),at the same time,we also need highly efficient 02 reduction reaction(ORR) in fuel cells for improving the reaction kinetics.Moreover,we can get the clean oxidant O2 from water through O2 evolution reaction(OER),and carry out some reactions without posing any pollution to reaction systems.Furthermore,we can translate the greenhouse gas CO2 into useful liquid fuels through CO2 reduction reaction(CRR).Last but not the least,we can get ammonia from N2 reduction reaction(NRR),which can decrease energy input compared to the traditional Hubble process.These reactions,such as HER,ORR,OER,CRR and NRR could be realized through solar-,photoelectro-and electro-assisted ways.For them,the catalysts used play crucial roles in determining the efficiency and kinds of products,so we should consider the efficiency of catalysts.However,the cost,synthetic methods of catalysts should also be considered.Nowadays,significant progress has been achieved,however,many challenges still exist,reaction systems,catalysts underlying mechanisms,and so on.As extremely active fields,we should pay attention to them.Under the background,it has motivated us to contribute with a roadmap on ’GasInvolved Photo-and Electro-Catalysis’. 展开更多
关键词 H2 evolution reaction o2 reduction reaction o2 evolution reaction Co2 reduction reaction N2 reduction reaction Electrocatalysis Photocatalysis PHOTOELECTROCATALYSIS
原文传递
Enhanced Water Oxidation Activity on Ni, Co-Doped Fe2O3 (0001) Surface
3
作者 卢宁 张文华 武晓君 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第5期553-558,I0002,共7页
Fe based oxides are considered as a promising catalyst for the oxygen evolution reaction (OER) due to their low cost and high stability. Here, based on density functional theory calculations, the electrocatalytic be... Fe based oxides are considered as a promising catalyst for the oxygen evolution reaction (OER) due to their low cost and high stability. Here, based on density functional theory calculations, the electrocatalytic behaviors of pure and metal (Ni, Co) doped Fe-terminated Fe2O3(0001) are investigated. The potential-limiting step for OER is determined as the formation of O* by dehydrogenating surface hydroxyl and it is suggested that the doping enhances the catalytic activity of Fe2O3(0001) by reducing the free energy change of rate limiting step on doped Ni or Co atom. Especially, the calculated over-potential of Co-doped Fe2O3 (0001) surface is about 0.63 eV on Co site, which is comparable with the theoretical over-potential of 0.56 eV for RuO2. 展开更多
关键词 First-principles calculation Oxygen evolution reaction Fe2O3
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部