Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation d...Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis.展开更多
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of...Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.展开更多
The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-gener...The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.展开更多
The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a n...The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a necessary step before their practical application.As these investigations are time and resource-consuming undertakings,an effective prediction model can significantly improve the efficiency of research operations.In this work,an Artificial Neural Network(ANN)model is developed to predict the thermal conductivity of metal oxide water-based nanofluid.For this,a comprehensive set of 691 data points was collected from the literature.This dataset is split into training(70%),validation(15%),and testing(15%)and used to train the ANN model.The developed model is a backpropagation artificial neural network with a 4–12–1 architecture.The performance of the developed model shows high accuracy with R values above 0.90 and rapid convergence.It shows that the developed ANN model accurately predicts the thermal conductivity of nanofluids.展开更多
This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential g...This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs.展开更多
Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY o...Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.展开更多
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ...Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.展开更多
With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion det...With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion detection models,this paper proposes a Dual-Attention model for NID,which combines Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM)to design two modules:the FocusConV and the TempoNet module.The FocusConV module,which automatically adjusts and weights CNN extracted local features,focuses on local features that are more important for intrusion detection.The TempoNet module focuses on global information,identifies more important features in time steps or sequences,and filters and weights the information globally to further improve the accuracy and robustness of NID.Meanwhile,in order to solve the class imbalance problem in the dataset,the EQL v2 method is used to compute the class weights of each class and to use them in the loss computation,which optimizes the performance of the model on the class imbalance problem.Extensive experiments were conducted on the NSL-KDD,UNSW-NB15,and CIC-DDos2019 datasets,achieving average accuracy rates of 99.66%,87.47%,and 99.39%,respectively,demonstrating excellent detection accuracy and robustness.The model also improves the detection performance of minority classes in the datasets.On the UNSW-NB15 dataset,the detection rates for Analysis,Exploits,and Shellcode attacks increased by 7%,7%,and 10%,respectively,demonstrating the Dual-Attention CNN-BiLSTM model’s excellent performance in NID.展开更多
The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.H...The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.However,maintaining consistent forwarding states during these updates is challenging,particularly when rerouting multiple flows simultaneously.Existing approaches pay little attention to multi-flow update,where improper update sequences across data plane nodes may construct deadlock dependencies.Moreover,these methods typically involve excessive control-data plane interactions,incurring significant resource overhead and performance degradation.This paper presents P4LoF,an efficient loop-free update approach that enables the controller to reroute multiple flows through minimal interactions.P4LoF first utilizes a greedy-based algorithm to generate the shortest update dependency chain for the single-flow update.These chains are then dynamically merged into a dependency graph and resolved as a Shortest Common Super-sequence(SCS)problem to produce the update sequence of multi-flow update.To address deadlock dependencies in multi-flow updates,P4LoF builds a deadlock-fix forwarding model that leverages the flexible packet processing capabilities of the programmable data plane.Experimental results show that P4LoF reduces control-data plane interactions by at least 32.6%with modest overhead,while effectively guaranteeing loop-free consistency.展开更多
The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditio...The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditional approaches like network compression,quantization,and lightweight design often sacrifice accuracy or feature representation robustness.This article introduces the Fast Multi-scale Channel Shuffling Network(FMCSNet),a novel lightweight detection model optimized for mobile devices.FMCSNet integrates a fully convolutional Multilayer Perceptron(MLP)module,offering global perception without significantly increasing parameters,effectively bridging the gap between CNNs and Vision Transformers.FMCSNet achieves a delicate balance between computation and accuracy mainly by two key modules:the ShiftMLP module,including a shift operation and an MLP module,and a Partial group Convolutional(PGConv)module,reducing computation while enhancing information exchange between channels.With a computational complexity of 1.4G FLOPs and 1.3M parameters,FMCSNet outperforms CNN-based and DWConv-based ShuffleNetv2 by 1%and 4.5%mAP on the Pascal VOC 2007 dataset,respectively.Additionally,FMCSNet achieves a mAP of 30.0(0.5:0.95 IoU threshold)with only 2.5G FLOPs and 2.0M parameters.It achieves 32 FPS on low-performance i5-series CPUs,meeting real-time detection requirements.The versatility of the PGConv module’s adaptability across scenarios further highlights FMCSNet as a promising solution for real-time mobile object detection.展开更多
Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may r...Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification.展开更多
With the rapid development of the Artificial Intelligence of Things(AIoT),convolutional neural networks(CNNs)have demonstrated potential and remarkable performance in AIoT applications due to their excellent performan...With the rapid development of the Artificial Intelligence of Things(AIoT),convolutional neural networks(CNNs)have demonstrated potential and remarkable performance in AIoT applications due to their excellent performance in various inference tasks.However,the users have concerns about privacy leakage for the use of AI and the performance and efficiency of computing on resource-constrained IoT edge devices.Therefore,this paper proposes an efficient privacy-preserving CNN framework(i.e.,EPPA)based on the Fully Homomorphic Encryption(FHE)scheme for AIoT application scenarios.In the plaintext domain,we verify schemes with different activation structures to determine the actual activation functions applicable to the corresponding ciphertext domain.Within the encryption domain,we integrate batch normalization(BN)into the convolutional layers to simplify the computation process.For nonlinear activation functions,we use composite polynomials for approximate calculation.Regarding the noise accumulation caused by homomorphic multiplication operations,we realize the refreshment of ciphertext noise through minimal“decryption-encryption”interactions,instead of adopting bootstrapping operations.Additionally,in practical implementation,we convert three-dimensional convolution into two-dimensional convolution to reduce the amount of computation in the encryption domain.Finally,we conduct extensive experiments on four IoT datasets,different CNN architectures,and two platforms with different resource configurations to evaluate the performance of EPPA in detail.展开更多
Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex...Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.展开更多
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s...With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.展开更多
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d...Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested.展开更多
The ergodic capacity of device-to-device (D2D) communication underlaying cellular networks is analyzed. First,the D2D communication model is introduced and the interference during uplink period and downlink period i...The ergodic capacity of device-to-device (D2D) communication underlaying cellular networks is analyzed. First,the D2D communication model is introduced and the interference during uplink period and downlink period is analyzed.In a D2D communication system,since it is very difficult to obtain the instantaneous channel state information (CSI),assume that only the transmitters know the statistical CSI and the channel coefficient follows an independent complex Gaussian distribution.Based on the assumptions,for the uplink period,the signal to interference plus noise ratio (SINR)of the D2D user equipments(DUEs)is expressed. Then the cumulative distribution function (CDF ) and probability distribution function (PDF)formulae of the SINR of the DUEs are presented.Based on the SINR formulae during the uplink period,the ergodic capacity formula of the uplink period is derived. Subsequently, using the same methods,the ergodic capacity formula of the downlink period is derived.The simulation results show that the DUEs can still obtain a high ergodic capacity even in the case of a large number of DUEs.This result can be applied to the design and optimization of D2D communications.展开更多
To avoid the aerodynamic performance loss of airfoil at non-design state which often appears in single point design optimization, and to improve the adaptability to the uncertain factors in actual flight environment, ...To avoid the aerodynamic performance loss of airfoil at non-design state which often appears in single point design optimization, and to improve the adaptability to the uncertain factors in actual flight environment, a two-dimensional stochastic airfoil optimization design method based on neural networks is presented. To provide highly efficient and credible analysis, four BP neural networks are built as surrogate models to predict the airfoil aerodynamic coefficients and geometry parameter. These networks are combined with the probability density function obeying normal distribution and the genetic algorithm, thus forming an optimization design method. Using the method, for GA(W)-2 airfoil, a stochastic optimization is implemented in a two-dimensional flight area about Mach number and angle of attack. Compared with original airfoil and single point optimization design airfoil, results show that the two-dimensional stochastic method can improve the performance in a specific flight area, and increase the airfoil adaptability to the stochastic changes of multiple flight parameters.展开更多
The effect of glass network modifier R2O (R=Li, Na, K) on upconversion luminescence in Er3+/yb3+ co-doped NaYF4 oxyfluoride glass-ceramics was investigated. NaYF4 nanocrystals with different sizes were studied und...The effect of glass network modifier R2O (R=Li, Na, K) on upconversion luminescence in Er3+/yb3+ co-doped NaYF4 oxyfluoride glass-ceramics was investigated. NaYF4 nanocrystals with different sizes were studied under glass network modifier alkali mental oxide. The nanocrystals size in NaYF4 of Li2O modified samples was 11 nm, whereas in the Na20 and K2O modified sample, the crystal size was 25 and 43 nm, respectively. It was found that red, yellow and green upconversions were observed in SAL, SAN, SAK glass ceramics. The reported results would deepen the understanding of size effects on the lanthanide upcon- version in nanocrystals.展开更多
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金supported by the Universiti Kebangsaan Malaysia(DIP-2016-024).
文摘Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis.
基金supported by the Chung-Ang University Research Grants in 2023.Alsothe work is supported by the ELLIIT Excellence Center at Linköping–Lund in Information Technology in Sweden.
文摘Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2025-00559546)supported by the IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korea government(Ministry of Science and ICT)(IITP-2025-RS-2023-00259004).
文摘The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1A6A1A10044950).
文摘The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a necessary step before their practical application.As these investigations are time and resource-consuming undertakings,an effective prediction model can significantly improve the efficiency of research operations.In this work,an Artificial Neural Network(ANN)model is developed to predict the thermal conductivity of metal oxide water-based nanofluid.For this,a comprehensive set of 691 data points was collected from the literature.This dataset is split into training(70%),validation(15%),and testing(15%)and used to train the ANN model.The developed model is a backpropagation artificial neural network with a 4–12–1 architecture.The performance of the developed model shows high accuracy with R values above 0.90 and rapid convergence.It shows that the developed ANN model accurately predicts the thermal conductivity of nanofluids.
文摘This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs.
基金supported by grants from the National Natural Science Foundation of China(82004252)the Project of Administration of Traditional Chinese Medicine of Guangdong Province(202405112017596500)the Basic and Applied Basic Research Foundation of Guangzhou Municipal Science and Technology Bureau(202102020533).
文摘Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01296).
文摘Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.
基金supported by the High-Level Talent Foundation of Jinling Institute of Technology(grant number.JIT-B-202413).
文摘With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion detection models,this paper proposes a Dual-Attention model for NID,which combines Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM)to design two modules:the FocusConV and the TempoNet module.The FocusConV module,which automatically adjusts and weights CNN extracted local features,focuses on local features that are more important for intrusion detection.The TempoNet module focuses on global information,identifies more important features in time steps or sequences,and filters and weights the information globally to further improve the accuracy and robustness of NID.Meanwhile,in order to solve the class imbalance problem in the dataset,the EQL v2 method is used to compute the class weights of each class and to use them in the loss computation,which optimizes the performance of the model on the class imbalance problem.Extensive experiments were conducted on the NSL-KDD,UNSW-NB15,and CIC-DDos2019 datasets,achieving average accuracy rates of 99.66%,87.47%,and 99.39%,respectively,demonstrating excellent detection accuracy and robustness.The model also improves the detection performance of minority classes in the datasets.On the UNSW-NB15 dataset,the detection rates for Analysis,Exploits,and Shellcode attacks increased by 7%,7%,and 10%,respectively,demonstrating the Dual-Attention CNN-BiLSTM model’s excellent performance in NID.
基金supported by the National Key Research and Development Program of China under Grant 2022YFB2901501in part by the Science and Technology Innovation leading Talents Subsidy Project of Central Plains under Grant 244200510038.
文摘The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.However,maintaining consistent forwarding states during these updates is challenging,particularly when rerouting multiple flows simultaneously.Existing approaches pay little attention to multi-flow update,where improper update sequences across data plane nodes may construct deadlock dependencies.Moreover,these methods typically involve excessive control-data plane interactions,incurring significant resource overhead and performance degradation.This paper presents P4LoF,an efficient loop-free update approach that enables the controller to reroute multiple flows through minimal interactions.P4LoF first utilizes a greedy-based algorithm to generate the shortest update dependency chain for the single-flow update.These chains are then dynamically merged into a dependency graph and resolved as a Shortest Common Super-sequence(SCS)problem to produce the update sequence of multi-flow update.To address deadlock dependencies in multi-flow updates,P4LoF builds a deadlock-fix forwarding model that leverages the flexible packet processing capabilities of the programmable data plane.Experimental results show that P4LoF reduces control-data plane interactions by at least 32.6%with modest overhead,while effectively guaranteeing loop-free consistency.
基金funded by the National Natural Science Foundation of China under Grant No.62371187the Open Program of Hunan Intelligent Rehabilitation Robot and Auxiliary Equipment Engineering Technology Research Center under Grant No.2024JS101.
文摘The ubiquity of mobile devices has driven advancements in mobile object detection.However,challenges in multi-scale object detection in open,complex environments persist due to limited computational resources.Traditional approaches like network compression,quantization,and lightweight design often sacrifice accuracy or feature representation robustness.This article introduces the Fast Multi-scale Channel Shuffling Network(FMCSNet),a novel lightweight detection model optimized for mobile devices.FMCSNet integrates a fully convolutional Multilayer Perceptron(MLP)module,offering global perception without significantly increasing parameters,effectively bridging the gap between CNNs and Vision Transformers.FMCSNet achieves a delicate balance between computation and accuracy mainly by two key modules:the ShiftMLP module,including a shift operation and an MLP module,and a Partial group Convolutional(PGConv)module,reducing computation while enhancing information exchange between channels.With a computational complexity of 1.4G FLOPs and 1.3M parameters,FMCSNet outperforms CNN-based and DWConv-based ShuffleNetv2 by 1%and 4.5%mAP on the Pascal VOC 2007 dataset,respectively.Additionally,FMCSNet achieves a mAP of 30.0(0.5:0.95 IoU threshold)with only 2.5G FLOPs and 2.0M parameters.It achieves 32 FPS on low-performance i5-series CPUs,meeting real-time detection requirements.The versatility of the PGConv module’s adaptability across scenarios further highlights FMCSNet as a promising solution for real-time mobile object detection.
文摘Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification.
基金supported by the Natural Science Foundation of China No.62362008the Major Scientific and Technological Special Project of Guizhou Province([2024]014).
文摘With the rapid development of the Artificial Intelligence of Things(AIoT),convolutional neural networks(CNNs)have demonstrated potential and remarkable performance in AIoT applications due to their excellent performance in various inference tasks.However,the users have concerns about privacy leakage for the use of AI and the performance and efficiency of computing on resource-constrained IoT edge devices.Therefore,this paper proposes an efficient privacy-preserving CNN framework(i.e.,EPPA)based on the Fully Homomorphic Encryption(FHE)scheme for AIoT application scenarios.In the plaintext domain,we verify schemes with different activation structures to determine the actual activation functions applicable to the corresponding ciphertext domain.Within the encryption domain,we integrate batch normalization(BN)into the convolutional layers to simplify the computation process.For nonlinear activation functions,we use composite polynomials for approximate calculation.Regarding the noise accumulation caused by homomorphic multiplication operations,we realize the refreshment of ciphertext noise through minimal“decryption-encryption”interactions,instead of adopting bootstrapping operations.Additionally,in practical implementation,we convert three-dimensional convolution into two-dimensional convolution to reduce the amount of computation in the encryption domain.Finally,we conduct extensive experiments on four IoT datasets,different CNN architectures,and two platforms with different resource configurations to evaluate the performance of EPPA in detail.
基金This study was supported by:Inner Mongolia Academy of Forestry Sciences Open Research Project(Grant No.KF2024MS03)The Project to Improve the Scientific Research Capacity of the Inner Mongolia Academy of Forestry Sciences(Grant No.2024NLTS04)The Innovation and Entrepreneurship Training Program for Undergraduates of Beijing Forestry University(Grant No.X202410022268).
文摘Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures.
基金funded by scientific research projects under Grant JY2024B011.
文摘With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes.
基金The work described in this paper was fully supported by a grant from Hong Kong Metropolitan University(RIF/2021/05).
文摘Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested.
基金The National Natural Science Foundation of China(No.61301110)Foundation of Shanghai Key Laboratory of Intelligent Information Processing of China(No.IIPL-2014-005)
文摘The ergodic capacity of device-to-device (D2D) communication underlaying cellular networks is analyzed. First,the D2D communication model is introduced and the interference during uplink period and downlink period is analyzed.In a D2D communication system,since it is very difficult to obtain the instantaneous channel state information (CSI),assume that only the transmitters know the statistical CSI and the channel coefficient follows an independent complex Gaussian distribution.Based on the assumptions,for the uplink period,the signal to interference plus noise ratio (SINR)of the D2D user equipments(DUEs)is expressed. Then the cumulative distribution function (CDF ) and probability distribution function (PDF)formulae of the SINR of the DUEs are presented.Based on the SINR formulae during the uplink period,the ergodic capacity formula of the uplink period is derived. Subsequently, using the same methods,the ergodic capacity formula of the downlink period is derived.The simulation results show that the DUEs can still obtain a high ergodic capacity even in the case of a large number of DUEs.This result can be applied to the design and optimization of D2D communications.
文摘To avoid the aerodynamic performance loss of airfoil at non-design state which often appears in single point design optimization, and to improve the adaptability to the uncertain factors in actual flight environment, a two-dimensional stochastic airfoil optimization design method based on neural networks is presented. To provide highly efficient and credible analysis, four BP neural networks are built as surrogate models to predict the airfoil aerodynamic coefficients and geometry parameter. These networks are combined with the probability density function obeying normal distribution and the genetic algorithm, thus forming an optimization design method. Using the method, for GA(W)-2 airfoil, a stochastic optimization is implemented in a two-dimensional flight area about Mach number and angle of attack. Compared with original airfoil and single point optimization design airfoil, results show that the two-dimensional stochastic method can improve the performance in a specific flight area, and increase the airfoil adaptability to the stochastic changes of multiple flight parameters.
基金supported by the National Natural Science Foundation of China(61368007,61265004,51272097)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20125314120018)
文摘The effect of glass network modifier R2O (R=Li, Na, K) on upconversion luminescence in Er3+/yb3+ co-doped NaYF4 oxyfluoride glass-ceramics was investigated. NaYF4 nanocrystals with different sizes were studied under glass network modifier alkali mental oxide. The nanocrystals size in NaYF4 of Li2O modified samples was 11 nm, whereas in the Na20 and K2O modified sample, the crystal size was 25 and 43 nm, respectively. It was found that red, yellow and green upconversions were observed in SAL, SAN, SAK glass ceramics. The reported results would deepen the understanding of size effects on the lanthanide upcon- version in nanocrystals.