期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Facilitating the oxygen redox chemistry in O3-type layered oxide cathode material for sodium-ion batteries by Fe substitution
1
作者 Wei Xiong Zhihao Liu +4 位作者 Wenjia Cheng Jiagui Zheng Yi Zou Xi Chen Yang Liu 《Journal of Energy Chemistry》 2025年第4期59-67,共9页
Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries.Nevertheless,there remains a paucity of literature pertaining to the oxygen redox chemist... Facilitating anion redox chemistry is an effective strategy to increase the capacity of layered oxides for sodium-ion batteries.Nevertheless,there remains a paucity of literature pertaining to the oxygen redox chemistry of O3-type layered oxide cathode materials.This work systematically investigates the effect of Fe doping on the anionic oxygen redox chemistry and electrochemical reactions in O3-NaNi_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1)O_(2).The results of the density functional theory(DFT)calculations indicate that the electrons of the O 2p occupy a higher energy level.In the ex-situ X-ray photoelectron spectrometer(XPS)of O 1s,the addition of Fe facilitates the lattice oxygen(O^(n-))to exhibit enhanced activity at 4.45 V.The in-situ X-ray diffraction(XRD)demonstrates that the doping of Fe effectively suppresses the Y phase transition at high voltages.Furthermore,the Galvanostatic Intermittent Titration Technique(GITT)data indicate that Fe doping significantly increases the Na~+migration rate at high voltages.Consequently,the substitution of Fe can elevate the cut-off voltage to 4.45 V,thereby facilitating electron migration from O^(2-).The redox of O^(2-)/O^(n-)(n<2)contributes to the overall capacity.O3-Na(Ni_(0.4)Cu_(0.1)Mn_(0.4)Ti_(0.1))_(0.92)Fe_(0.08)O_(2)provides an initial discharge specific capacity of 180.55 mA h g^(-1)and71.6%capacity retention at 0.5 C(1 C=240 mA g^(-1)).This work not only demonstrates the beneficial impact of Fe substitution for promoting the redox activity and reversibility of O^(2-)in 03-type layered oxides,but also guarantees the structural integrity of the cathode materials at high voltages(>4.2 V).It offers a novel avenue for investigating the anionic redox reaction in O3-type layered oxides to design advanced cathode materials. 展开更多
关键词 Sodium-ion battery oxygen redox chemistry o3 layered oxide Doping modification Cathode material
在线阅读 下载PDF
Manipulating local electronic and interfacial structure of O_(3)-type layered oxides for high-rate sodium-ion battery cathodes
2
作者 Yong Li Lanlan Lei +10 位作者 Jie Hou Guangming Wang Qinhui Ren Qinhao Shi Juan Wang Liping Chen Guannan Zu Shuyue Li Jianghua Wu Yunhua Xu Yufeng Zhao 《Journal of Energy Chemistry》 2025年第6期224-232,I0006,共10页
03-type layered oxide serves as dominant components in sodium ion batteries;however,the unstable electronic structure between transition metal and oxygen inevitably induces framework instability and severe kinetic hin... 03-type layered oxide serves as dominant components in sodium ion batteries;however,the unstable electronic structure between transition metal and oxygen inevitably induces framework instability and severe kinetic hindrance.In this study,a two-in-one approach to synergistically modulate the local electro nic and interfacial structure of NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)by Ce modification is proposed.We present an indepth study to reveal the strong-covalent Ce-O bonds,which make local charge around oxygen more negative,enhance O 2p-Mn 3d hybridization,and preserve the octahedral structural integrity.This modification tailors local electronic structure between the octahedral metal center and oxygen,thus enhancing reversibility of 03-P3-03 phase transition and expanding Na+octahedral-tetrahedral-octahedral transport channel.Additionally,the nanoscale perovskite layer induced by Ce element is in favor of minimizing interfacial side reaction as well as enhancing Na^(+)diffusivity.As a result,the designed 03-NaNi_(0.305)Fe_(0.33)Mn_(0.33)Ce_(0.025)O_(2)material delivers an exceptionally low volume variation,an ultrahigh rate capacity of 76.9 mA h g^(-1)at 10 C,and remarkable cycling life over 250 cycles with capacity retention of 80% at 5 C. 展开更多
关键词 Sodium ion batteries o3-type layered oxide Kinetic hindrance Phase transition Electronic structure
在线阅读 下载PDF
Designing ultrastable P2/O3-type layered oxides for sodium ion batteries by regulating Na distribution and oxygen redox chemistry 被引量:3
3
作者 Jieyou Huang Weiliang Li +3 位作者 Debin Ye Lin Xu Wenwei Wu Xuehang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期466-476,共11页
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas... P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs. 展开更多
关键词 Sodium-ion batteries P2/o3-type layered oxides Na distribution oxygen redox chemistry Hydrostability
在线阅读 下载PDF
Achieving structurally stable O3-type layered oxide cathodes through site-specific cation-anion co-substitution for sodium-ion batteries 被引量:1
4
作者 Yihao Shen Chen Cheng +5 位作者 Xiao Xia Lei Wang Xi Zhou Pan Zeng Jianrong Zeng Liang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期411-418,I0011,共9页
O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrolla... O3-type layered oxides have garnered great attention as cathode materials for sodium-ion batteries because of their abundant reserves and high theoretical capacity.However,challenges persist in the form of uncontrollable phase transitions and intricate Na^(+)diffusion pathways during cycling,resulting in compromised structural stability and reduced capacity over cycles.This study introduces a special approach employing site-specific Ca/F co-substitution within the layered structure of O_(3)-NaNi_(0.5)Mn_(0.5)O_(2) to effectively address these issues.Herein,the strategically site-specific doping of Ca into Na sites and F into O sites not only expands the Na^(+)diffusion pathways but also orchestrates a mild phase transition by suppressing the Na^(+)/vacancy ordering and providing strong metal-oxygen bonding strength,respectively.The as-synthesized Na_(0.95)Ca_(0.05)Ni_(0.5)Mn_(0.5)O_(1.95)F_(0.05)(NNMO-CaF)exhibits a mild O3→O3+O'3→P3 phase transition with minimized interlayer distance variation,leading to enhanced structural integrity and stability over extended cycles.As a result,NNMO-CaF delivers a high specific capacity of 119.5 mA h g^(-1)at a current density of 120 mA g^(-1)with a capacity retention of 87.1%after 100 cycles.This study presents a promising strategy to mitigate the challenges posed by multiple phase transitions and augment Na^(+)diffusion kinetics,thus paving the way for high-performance layered cathode materials in sodium-ion batteries. 展开更多
关键词 Sodium-ion batteries o3-type layered oxides Site-specific co-doping Phase transition
在线阅读 下载PDF
Enhanced CO oxidation over potassium-promoted Pt/Al_2O_3 catalysts:Kinetic and infrared spectroscopic study 被引量:1
5
作者 刘欢欢 贾爱平 +2 位作者 王瑜 罗孟飞 鲁继青 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1976-1986,共11页
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co... A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species. 展开更多
关键词 Co oxidation Potassium Kinetics Pt/Al2o3 catalyst Promoting effect
在线阅读 下载PDF
Sulfur poisoning and regeneration of MnO_x-CeO_2-Al_2O_3 catalyst for soot oxidation 被引量:8
6
作者 吴晓东 李亨烈 +1 位作者 刘爽 翁端 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第7期659-664,共6页
MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after th... MnOx-CeO2-Al2O3 mixed oxides were prepared by impregnating manganese and cerium precursors on alumina powders via a sol- gel deposition method. The oxide catalyst exhibited a poor resistance to sulfur dioxide after the treatment in 100 ppm SO2/air at 350 °C for 50 h. The formation of manganese sulfate and especially cerium sulfate reduced the availability of surface active metal oxides, blocked the pore structure and decreased the surface area of the catalyst. These changes in chemical and structural and textural properties resulted in a severe loss in the activities of the sulfated catalyst for NO and soot oxidation. The decomposition of sulfates was almost complete during the calcina-tion in air at 800 °C for 30 min, which partially recovered the surface active sites and the catalyst surface area despite the significant sintering of metal oxides. Consequently, the NOx-assisted soot oxidation activity of the catalyst was regenerated to some extent by the oxidation treatment. 展开更多
关键词 Mnox-Ceo2-Al2o3 mixed oxides diesel soot sulfur dioxide thermal regeneration rare earths
原文传递
Selective oxidation of methane and carbon deposition over Fe_2O_3/Ce_(1-x)Zr_xO_2 oxides 被引量:4
7
作者 Xiu-Li Sang Kong-Zhai Li +1 位作者 Hua Wang Yong-Gang Wei 《Rare Metals》 SCIE EI CAS CSCD 2014年第2期230-238,共9页
A series of Fe2O3/Al2O3, Fe2O3/CeO2, Ce0.7Zr0.3O2, and Fe2O3/Ce1-xZrxO2(x = 0.1–0.4) oxides was prepared and their physicochemical features were investigated by X-ray diffraction(XRD), transmission electron micro... A series of Fe2O3/Al2O3, Fe2O3/CeO2, Ce0.7Zr0.3O2, and Fe2O3/Ce1-xZrxO2(x = 0.1–0.4) oxides was prepared and their physicochemical features were investigated by X-ray diffraction(XRD), transmission electron microscope(TEM), and H2-temperature-programmed reduction(H2-TPR) techniques. The gas–solid reactions between these oxides and methane for syngas generation as well as the catalytic performance for selective oxidation of carbon deposition in O2-enriched atmosphere were investigated in detail. The results show that the samples with the presence of Fe2O3show much higher activity for methane oxidation compared with the Ce0.7Zr0.3O2solid solution,while the CeO2-contained samples represent higher CO selectively in methane oxidation than the Fe2O3/Al2O3sample. This suggests that the iron species should be the active sites for methane activation, and the cerium oxides provide the oxygen source for the selective oxidation of the activated methane to syngas during the reaction between methane and Fe2O3/Ce0.7Zr0.3O2. For the oxidation process of the carbon deposition, the CeO2-containing samples show much higher CO selectivity than the Fe2O3/Al2O3sample, which indicates that the cerium species should play a very important role in catalyzing the carbon selective oxidation to CO. The presence of the Ce–Zr–O solid solution could induce the growth direction of the carbonfilament, resulting in a loose contact between the carbon filament and the catalyst. This results in abundant exposed active sites for catalyzing carbon oxidation, strongly improving the oxidation rate of the carbon deposition over this sample. In addition, the Fe2O3/Ce0.7Zr0.3O2also represents much higher selectivity(ca. 97 %) for the conversion of carbon to CO than the Fe2O3/CeO2sample, which can be attributed to the higher concentration of reduced cerium sites on this sample. The increase of the Zr content in the Fe2O3/Ce1-xZrxO2samples could improve the reactivity of the materials for methane oxidation, but it also reduces the selectivity for CO formation. 展开更多
关键词 Methane Carbon deposition Gas–solid reaction Selective oxidation of carbon Fe2o3/Ce1-xZrxo2 catalysts
原文传递
Multicomponent high-entropy assisted high-rate and air-stable layered cathode for sodium ion batteries
8
作者 Renyi Ma Jiaqi Wang +6 位作者 Guohua Zhu Yongguang Liu Ling Wang Xiaoyan Zhang Linzhe Wang Lei Dai Shan Liu 《Green Energy & Environment》 2025年第8期1797-1806,共10页
Sodium-based O3-type layered oxide materials are attractive for Sodium-ion batteries(SIBs)due to their simple synthesis,affordability,and high capacity.However,challenges remain,including limited reversible capacity a... Sodium-based O3-type layered oxide materials are attractive for Sodium-ion batteries(SIBs)due to their simple synthesis,affordability,and high capacity.However,challenges remain,including limited reversible capacity and poor cycling stability caused by detrimental phase tran-sitions during cycling and the tendency to form sodium carbonate upon air exposure.In this study,based on O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NNFM),a high-entropy strategy was introduced to successfully synthesize O3-type NaNi_(0.25)Fe_(0.21)Mn_(0.18)Co_(0.21)Ti_(0.1)Mg_(0.05)O_(2)(HE-NNFM).The introduction of Co,Ti,and Mg ions increases the system's disorder,highlighting the synergistic interactions among inert atoms.The delayed phase transformation effect in high-entropy materials alleviates the destruction of the O3 structure by the insertion and extraction of sodium ions.Simultaneously,the narrower sodium layer in HE-NNFM acts as a physical barrier,effectively preventing adverse reactions with H2O and CO_(2) in the air,resulting in excellent reversibility and air stability of the HE-NNFM material.Consequently,the HE-NNFM material exhibits a reversible capacity of 110 mAh·g^(-1)with a capacity retention of 97.3%after 200 cycles at 1 C.This work provides insights into the design of high-entropy sodium layered oxides for high-power density storage systems. 展开更多
关键词 SIBS o3-type layered oxide cathode High-entropy Delay phase transition Air stability
在线阅读 下载PDF
Preparation of SiC_p/Al_2O_3-Al Composites by Directed Metal Oxidation
9
作者 LIN Ying YANG Hai-bo WANG Fen ZHU Jian-feng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期47-50,共4页
SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microsco... SiCp/Al2O3-Al composites were synthesized by means of direct metal oxidation method. The composition and microstructures of the composites were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and metallurgical microscope. The effects of technical parameters on the properties of the product were analyzed. The results indicate that the composite possesses a dense microstructure, composed of three interpenetrated phases. Of them, SiO2 layer prohibits the powdering of the composites; Mg promotes the wetting and infiltration of the system and Si restricts the interfacial reaction while improving the wetting ability between reinforcement and matrix. 展开更多
关键词 SiCD/Al2o3-Al composites: directed metal oxidation Al-Mg-Si alloy SiC reinforcement
在线阅读 下载PDF
Rh_2O_3/monoclinic CePO_4 composite catalysts for N_2O decomposition and CO oxidation
10
作者 Huan Liu Zhen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期109-115,共7页
CePO4 (in particular, monoclinic CePO4) has been rarely used to make supported catalysts. Herein, monoclinic CeP04 nanoparticles were prepared by calcining hexagonal CePO4 nanomds (prepared by precipitation) in ai... CePO4 (in particular, monoclinic CePO4) has been rarely used to make supported catalysts. Herein, monoclinic CeP04 nanoparticles were prepared by calcining hexagonal CePO4 nanomds (prepared by precipitation) in air at 900 ℃. Monoclinic CePO4 nanowires were prepared by calcining hexagonal CePO4 nanowires (prepared by hydrothermal synthesis at 150 ℃) in air at 900 ℃. Both monoclinic CePO4 materials were used to support Rh2O3 by impregnation using Rh(NO3)3 as a precursor (followed by calcination). The catalytic performance of Rh2O3/monoclinic CePO4 composite materials in N2O decomposition and CO oxidation was investigated. It was found that Rh2O3 supported on monoclinic CePO4 nanowims was much more active than Rh2O3 supported on monoclinic CePO4 nanoparticles. The stability of catalysts as a function of reaction time on stream was studied in both reactions. The influence of co-fed CO2, O2, and H2O on the catalytic activity in N20 decomposition was also studied. These catalysts were characterized by employing N2 adsorption-desorption, ICP-OES, XRD, TEM, XPS, H2-TPR, O2-TPD, and CO2-TPD. The correlation between physicochemical properties and catalytic properties was discussed. 展开更多
关键词 Rh2o3 CePo4 N2o decomposition Co oxidation Catalyst
在线阅读 下载PDF
Fe(NO_3)_3-9H_2O-catalyzed aerobic oxidation of sulfides to sulfoxides under mild conditions with the aid of trifluoroethanol
11
作者 Xue-Dong Li Ran Ma Liang-Nian He 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第5期539-542,共4页
Selective oxidation of sulfides to sulfoxides was successfully performed by employing readily available Fe(NO3)3-9H2O as the active catalyst with oxygen as the oxidant in 2,2,2-trifluoroethanol (TFE) without the f... Selective oxidation of sulfides to sulfoxides was successfully performed by employing readily available Fe(NO3)3-9H2O as the active catalyst with oxygen as the oxidant in 2,2,2-trifluoroethanol (TFE) without the formation of sulfones. Nitrate anion could play a crucial role in promoting the reaction due to the oxidation capacity under acidic media. High yields of sulfoxides were exclusively obtained from the corresponding sulfides. Furthermore, both aromatic and aliphatic sulfides gave moderate to high yields of sulfoxides with this protocol. 展开更多
关键词 FeiNo33.9H2o TFE oxidation Sulfox[des
原文传递
Al_2O_3包覆LiCoO_2对4.35V锂离子电池性能的影响 被引量:8
12
作者 王珍珍 郭密 +1 位作者 陈宇 江卫军 《电池》 CAS CSCD 北大核心 2014年第2期100-103,共4页
用固相法对钴酸锂(LiCoO2)正极材料进行纳米三氧化二铝(Al2O3)表面包覆,在充电终止电压为4.35 V时分析制备的495060AR型锂离子电池的性能。在放电截止电压为3.00 V时,以0.5 C放电,包覆、未包覆LiCoO2的比容量分别为167.6 mAh/g、170.9 m... 用固相法对钴酸锂(LiCoO2)正极材料进行纳米三氧化二铝(Al2O3)表面包覆,在充电终止电压为4.35 V时分析制备的495060AR型锂离子电池的性能。在放电截止电压为3.00 V时,以0.5 C放电,包覆、未包覆LiCoO2的比容量分别为167.6 mAh/g、170.9 mAh/g,平均电压分别为3.763 V、3.776 V;常温下1.0 C循环200次,包覆、未包覆LiCoO2的容量保持率分别为94.46%、96.40%。在55℃、48 h储存测试中,包覆LiCoO2制备的电池表现出更好的环境适应性;包覆LiCoO2制备的电池在高温45℃下以0.5 C循环200次,容量保持率为93.50%。对电池进行过充、热冲击测试,均未起火、爆炸。 展开更多
关键词 钴酸锂(LiCoo2) 包覆 三氧化二铝(Al2o3) 锂离子电池 lithium cobalt oxide(LiCoo2) aluminium oxide(Al2o3)
在线阅读 下载PDF
Magnetic Fe_3O_4-Reduced Graphene Oxide Nanocomposites-Based Electrochemical Biosensing 被引量:4
13
作者 Lili Yu Hui Wu +4 位作者 Beina Wu Ziyi Wang Hongmei Cao Congying Fu Nengqin Jia 《Nano-Micro Letters》 SCIE EI CAS 2014年第3期258-267,共10页
An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the mag... An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 m M with a low detection limit of0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application. 展开更多
关键词 Fe3o4-reduced graphene oxide(Fe3o4-RGo) NANoCoMPoSITES Magnetically controllable assembling Direct electron transfer BIoSENSoR
在线阅读 下载PDF
CO_2 methanation over TiO_2–Al_2O_3 binary oxides supported Ru catalysts 被引量:5
14
作者 Jinghua Xu Qingquan Lin +3 位作者 Xiong Su Hongmin Duan Haoran Geng Yanqiang Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第1期140-145,共6页
TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was inv... TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles. 展开更多
关键词 Co2 methanation Supported Ru catalyst Tio2–Al2o3 binary oxide
在线阅读 下载PDF
Preparation and thermoelectric transport properties of Ba-, La- and Ag- doped Ca3Co4O9 oxide materials 被引量:2
15
作者 ZHANG Feipeng LU Qingmei +3 位作者 LITingxian ZHANG Xin ZHANG Jiuxing SONG Xiaoyan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第8期778-783,共6页
The Ba-, La- and Ag-doped polycrystalline Ca2.9M0.1Co4O9 (M=Ca, Ba, La, Ag) thermoelectric bulk samples were pre- pared via citrate acid sol-gel synthesis method followed by spark plasma sintering technique. The bul... The Ba-, La- and Ag-doped polycrystalline Ca2.9M0.1Co4O9 (M=Ca, Ba, La, Ag) thermoelectric bulk samples were pre- pared via citrate acid sol-gel synthesis method followed by spark plasma sintering technique. The bulk samples were characterized and analyzed with regard to their phase compositions, grain orientations as well as microstructures. The high temperature thermoelec- tric transport properties of the bulk samples were studied in detail. All bulk samples were found to be single-phased with modified body texture. The electrical resistivity was modulated as a result of carrier concentration modification, however the carrier transport process was not influenced; the Seebeck coefficient was deteriorated simultaneously. The total thermal conductivity was remarkably reduced, on account of the decreasing of phonon thermal conductivity. The thermoelectric properties of the Ba-, La-, and Ag-doped bulk samples were optimized, and the Ba-doped Ca2.9Ba0.1Co4O9 system was found to have the highest dimensionless figure of merit ZT0.20 at 973 K, which was remarkably higher than that of the un-doped sample. 展开更多
关键词 Ca3Co4o9 oxide Ca-site doping thermoelectric transport properties rare earths
原文传递
Structure and Waveguide Properties of Sol-Gel Derived Gd_2O_3 Films 被引量:1
16
作者 郭海 肖腾 +4 位作者 杨旭东 张慰萍 楼立人 尹民 Jacques Mugnier 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第1期27-30,共4页
Pure and rare earth doped gadolinium oxide (Gd 2O 3) waveguide films were prepared by a simple sol-gel process and dip-coating method. Structure of Gd 2O 3 films annealed at different temperature was investigated ... Pure and rare earth doped gadolinium oxide (Gd 2O 3) waveguide films were prepared by a simple sol-gel process and dip-coating method. Structure of Gd 2O 3 films annealed at different temperature was investigated by X-ray diffraction and transmission electron microscopy. Oriented growth of (400) face of Gd 2O 3 has been observed when the films were deposited on amorphous substrate. The refractive index and thickness of films were determined by m-lines spectroscopy. The laser beam (λ=632.8 nm) was coupled into the film by a prism coupler and the propagation length is about 3.5 cm. Luminescence properties of europium ions doped films were measured by waveguide fluorescence spectroscopy, which shows disordered environment for Eu 3+ at 400 ℃. 展开更多
关键词 oPTICS waveguide film SoL-GEL gadolinium oxide (Gd2o3) rare earths
在线阅读 下载PDF
High‑Entropy Layered Oxide Cathode Enabling High‑Rate for Solid‑State Sodium‑Ion Batteries 被引量:4
17
作者 Tianxun Cai Mingzhi Cai +5 位作者 Jinxiao Mu Siwei Zhao Hui Bi Wei Zhao Wujie Dong Fuqiang Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期160-171,共12页
Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instabilit... Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries. 展开更多
关键词 High-entropy High-rate performance Li-TM interaction Air stability o3 layered oxide cathode
在线阅读 下载PDF
Influence of chemical modification by Y2O3 on eutectic Si characteristics and tensile properties of A356 alloy 被引量:1
18
作者 M. E. MOUSSA S. EL-HADAD W. KHALIFA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1365-1374,共10页
The modification of A356 aluminum-silicon alloy using yttrium oxide (Y2O3) was studied. Addition levels of up to 2.5 wt.% Y2O3 were investigated. A premixed powder of Al-30wt.%Y2O3 was added to the melt at about 750℃... The modification of A356 aluminum-silicon alloy using yttrium oxide (Y2O3) was studied. Addition levels of up to 2.5 wt.% Y2O3 were investigated. A premixed powder of Al-30wt.%Y2O3 was added to the melt at about 750℃ using vortex method. Samples were then poured in sand mold. The results showed that evident modification was obtained using the Y2O3 addition. The optimum level was 1.5 wt.%, and was corresponding to a eutectic temperature depression from 568 to 557℃. The eutectic Si particles were refined in length from 44.8 to 8.3 μm, and modified in aspect ratio from 6.8 to 0.98. Higher additions of Y2O3 caused de-modification of the eutectic Si particles. The ductility of the modified specimens was enhanced by more than 20% compared to the unmodified ones. This was associated with a gradual transfer from cleavage to a more ductile mode of fracture. 展开更多
关键词 hypoeutectic Al-Si alloys MoDIFICATIoN yttrium oxide (Y2o3) DUCTILITY fracture mode
在线阅读 下载PDF
Highly efficient P uptake by Fe3O4 loaded amorphous Zr-La (carbonate) oxides: Electrostatic attraction, inner-sphere complexation and oxygen vacancies acceleration effect 被引量:3
19
作者 Chenyang Liu Yili Wang +5 位作者 Xiaolin Li Junyi Li Shuoxun Dong Haotian Hao Yao Tong Yanqing Zhou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第10期18-29,共12页
Bimetallic oxides composites have received an increasing attention as promising adsorbents for aqueous phosphate (P) removal in recent years. In this study, a novel magnetic composite MZLCO was prepared by hybridizing... Bimetallic oxides composites have received an increasing attention as promising adsorbents for aqueous phosphate (P) removal in recent years. In this study, a novel magnetic composite MZLCO was prepared by hybridizing amorphous Zr-La (carbonate) oxides (ZLCO) with nano-FeOthrough a one-pot solvothermal method for efficient phosphate adsorption. Our optimum sample of MZLCO-45 exhibited a high Langmuir maximum adsorption capacity of 96.16 mg P/g and performed well even at low phosphate concentration. The phosphate adsorption kinetics by MZLCO-45 fitted well with the pseudo-second-order model, and the adsorption capacity could reach 79% of the ultimate value within the first 60 min. The phosphate adsorption process was highly p H-dependent, and MZLCO-45 performed well over a wide p H range of 2.0-8.0. Moreover, MZLCO-45 showed a strong selectivity to phosphate in the presence of competing ions (Cl^(-), NO_(3)^(-), SO_(4)^(2-), HCO_(3)^(-), Ca^(2+), and Mg^(2+)) and a good reusability using the eluent of Na OH/Na Cl mixture, then 64% adsorption capacity remained after ten recycles. The initial 2.0 mg P/L in municipal wastewater and surface water could be efficiently reduced to below 0.1mg P/L by 0.07 g/L MZLCO-45, and the phosphate removal efficiencies were 95.7% and 96.21%, respectively. Phosphate adsorption mechanisms by MZLCO-45 could be attributed to electrostatic attraction and the inner-sphere complexation via ligand exchange forming Zr/La-O-P, -OH and CO_(3)^(2-)groups on MZLCO-45 surface played important roles in the ligand exchange process. The existence of oxygen vacancies could accelerate the phosphate absorption rate of the MZLCO-45 composites. 展开更多
关键词 Fe3o4 loaded amorphous Zr-La(carbonate)oxides Phosphate adsorption performance Regeneration Mechanism Real water treatment
原文传递
Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A^3-coupling synthesis of propargylamines 被引量:2
20
作者 Maryam Mirabedini Elaheh Motamedi Mohammad Zaman Kassaee 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第9期1085-1090,共6页
Magnetically separable CuO nanoparticles supported on graphene oxide(Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH,at 90 C.Fe3O4 NPs/GOCuO NPs is found to be a... Magnetically separable CuO nanoparticles supported on graphene oxide(Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH,at 90 C.Fe3O4 NPs/GOCuO NPs is found to be an efficient catalyst for the A^3-coupling of aldehydes,amines,and alkynes through C-H activation.Both aromatic and aliphatic aldehydes and alkynes are combined with secondary amines to provide a wide range of propargylamines in moderate to excellent yields. 展开更多
关键词 Cuo Graphene oxide Fe3o4 A^3-coupling Nano-catalyst Magnetic nanoparticles
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部