期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向图像集分类的切空间稀疏表示算法 被引量:2
1
作者 陈凯旋 吴小俊 《中国图象图形学报》 CSCD 北大核心 2018年第7期961-972,共12页
目的在基于图像集的分类任务中,用SPD(symmetric positive definite)矩阵描述图像集,并考虑所得到的黎曼流形,已被证明对许多分类任务有较好的效果。但是,已有的经典分类算法大多应用于欧氏空间,无法直接应用于黎曼空间。为了将欧氏空... 目的在基于图像集的分类任务中,用SPD(symmetric positive definite)矩阵描述图像集,并考虑所得到的黎曼流形,已被证明对许多分类任务有较好的效果。但是,已有的经典分类算法大多应用于欧氏空间,无法直接应用于黎曼空间。为了将欧氏空间的分类方法应用于解决图像集的分类,综合考虑SPD流形的LEM(Log-Euclidean metric)度量和欧氏空间分类算法的特性,实现基于图像集的分类任务。方法通过矩阵的对数映射将SPD流形上的样本点映射到切空间中,切空间中的样本点与图像集是一一对应的关系,此时,再将切空间中的样本点作为欧氏空间中稀疏表示分类算法的输入以实现图像集的分类任务。但是切空间样本的形式为对称矩阵,且维度较大,包含一定冗余信息,为了提高算法的性能和运行效率,使用NYSTR?M METHOD和(2D) ~2PCA(two-directional twodimensional PCA)两种方法来获得包含图像集的主要信息且维度更低的数据表示形式。结果在实验中,对人脸、物体和病毒细胞3种不同的对象进行分类,并且与一些用于图像集分类的经典算法进行对比。实现结果表明,本文算法不仅具有较高的识别率,而且标准差也相对较小。在人脸数据集上,本文算法的识别率可以达到78.26%,比其他算法高出10%左右,同时,具有最小的标准差2.71。在病毒数细胞据集上,本文算法的识别率可以达到58.67%,在所有的方法中识别率最高。在物体识别的任务中,本文算法的识别率可以达到96.25%,标准差为2.12。结论实验结果表明,与一些经典的基于图像集的分类算法对比,本文算法的识别率有较大的提高且具有较小的标准差,对多种数据集有较强的泛化能力,这充分说明了本文算法可以广泛应用于解决基于图像集的分类任务。但是,本文是通过(2D) ~2PCA和NYSTR?M METHOD对切空间中样本进行降维来获得更低维度的样本,以提高算法的运行速度和性能。如何直接构建维度更低,且具有判别性的SPD流形将是下一步的研究重点。 展开更多
关键词 SPD流形 图像集分类 NYSTROM method 双相2维主成分分析((2D)^(2)PCA) 稀疏表示
原文传递
THE NYSTROM METHOD FOR ELASTIC WAVE SCATTERINGBY UNBOUNDED ROUGH SURFACES
2
作者 Jianliang Li Xiaoli Liu +1 位作者 Bo Zhang Haiwen Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2024年第5期1407-1426,共20页
We consider a numerical algorithm for the two-dimensional time-harmonic elastic wave scattering by unbounded rough surfaces with Dirichlet boundary condition.A Nystr¨om method is proposed for the scattering probl... We consider a numerical algorithm for the two-dimensional time-harmonic elastic wave scattering by unbounded rough surfaces with Dirichlet boundary condition.A Nystr¨om method is proposed for the scattering problem based on the integral equation method.Convergence of the Nystr¨om method is established with convergence rate depending on the smoothness of the rough surfaces.In doing so,a crucial role is played by analyzing the singularities of the kernels of the relevant boundary integral operators.Numerical experiments are presented to demonstrate the effectiveness of the method.Mathematics subject classification:35P25,45P05. 展开更多
关键词 Elastic wave scattering Unbounded rough surface Nystrom method
原文传递
ASYMPTOTIC ERROR EXPANSION FOR THE NYSTROM METHOD OF NONLINEAR VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND
3
作者 Han Guo-qiang (Dept. Of Comp, Science, South China University of Science and Technology, Guangzhou, China) 《Journal of Computational Mathematics》 SCIE CSCD 1994年第1期31-35,共5页
While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approxima... While the numerical solution of one-dimensional Volterra integral equations of the second kind with regular kernels is well understood, there exist no systematic studies of asymptotic error expansion for the approximate solution. In this paper,we analyse the Nystrom solution of one-dimensional nonlinear Volterra integral equation of the second kind and show that approkimate solution admits an asymptotic error expansion in even powers of the step-size h, beginning with a term in h2. So that the Richardson's extrapolation can be done. This will increase the accuracy of numerical solution greatly. 展开更多
关键词 ASYMPTOTIC ERROR EXPANSION FOR THE NYSTROM method OF NONLINEAR VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND
原文传递
Efficient Preference Clustering via Random Fourier Features 被引量:1
4
作者 Jingshu Liu Li Wang Jinglei Liu 《Big Data Mining and Analytics》 2019年第3期195-204,共10页
Approximations based on random Fourier features have recently emerged as an efficient and elegant method for designing large-scale machine learning tasks.Unlike approaches using the Nystr?m method,which randomly sampl... Approximations based on random Fourier features have recently emerged as an efficient and elegant method for designing large-scale machine learning tasks.Unlike approaches using the Nystr?m method,which randomly samples the training examples,we make use of random Fourier features,whose basis functions(i.e.,cosine and sine)are sampled from a distribution independent from the training sample set,to cluster preference data which appears extensively in recommender systems.Firstly,we propose a two-stage preference clustering framework.In this framework,we make use of random Fourier features to map the preference matrix into the feature matrix,soon afterwards,utilize the traditional k-means approach to cluster preference data in the transformed feature space.Compared with traditional preference clustering,our method solves the problem of insufficient memory and greatly improves the efficiency of the operation.Experiments on movie data sets containing 100000 ratings,show that the proposed method is more effective in clustering accuracy than the Nystr?m and k-means,while also achieving better performance than these clustering approaches. 展开更多
关键词 random Fourier features matrix decomposition similarity matrix Nystrom method preference clustering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部