On May 19,2025,the groundbreaking ceremony for the Phase I of the nylon fiber project of Colorful Nylon Fiber Co.,Ltd.(a subsidiary of Eversun Corporation),was held in the Dat Do Industrial Park in Vung Tau Province,V...On May 19,2025,the groundbreaking ceremony for the Phase I of the nylon fiber project of Colorful Nylon Fiber Co.,Ltd.(a subsidiary of Eversun Corporation),was held in the Dat Do Industrial Park in Vung Tau Province,Vietnam.Representatives from the Eversun Corporation,the local government of Vietnam,the Vung Tau Industrial Park,and cooperative enterprises jointly witnessed this important moment.Jiangen Wang,General Manager of Eversun Corporation,Yuxin Chen,General Manager of Resultant Construction Co.,Ltd.,and Youtong Chen,Deputy Director of Dat Do Industrial Park Management Committee attended the ceremony.展开更多
Polymer gears are increasingly replacing metal gears in applications with low to medium torque.Traditionally,polymer gears have been manufactured using injection molding,but additive manufacturing(AM)is becoming incre...Polymer gears are increasingly replacing metal gears in applications with low to medium torque.Traditionally,polymer gears have been manufactured using injection molding,but additive manufacturing(AM)is becoming increasingly common.Among the different types of polymer gears,nylon gears are particularly popular.However,there is currently very limited understanding of the wear resistance of nylon gears and of the impact of the manufacturing method on gear wear performance.The aims of this work are(a)to study the wear process of nylon gears made using the conventional injection molding method and two popularly used AM methods,namely,fused deposition modeling and selective laser sintering,(b)to compare and understand the wear performance by monitoring the evolution of the gear surfaces of the teeth,and(c)to study the effect of wear on the gear dynamics by analyzing gearbox vibration signals.This article presents experimental work,data analysis of the wear processes using molding and image analysis techniques,as well as the vibration data collected during gear wear tests.It also provides key results and further insights into the wear performance of the tested nylon gears.The information gained in this study is useful for better understanding the degradation process of additively manufactured nylon gears.展开更多
This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe_(3)O_(4) nanoparticles into nylon films using a spray coating technique.Five triboelectric nanogenerator prot...This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe_(3)O_(4) nanoparticles into nylon films using a spray coating technique.Five triboelectric nanogenerator prototypes were created:one with regular nylon and four with nylon/Fe_(3)O_(4) nanocomposites featuring varying nanoparticle densities.The electrical output,measured by open-circuit voltage and short-circuit current,showed significant improvements in the nanocomposite-based triboelectric nanogenerators compared to the nylon-only triboelectric nanogenerator.When a weak magnetic field was applied during nanocomposite preparation,the maximum voltage and current reached 56.3 V and 4.62μA,respectively.Further analysis revealed that the magnetic field during the drying process aligned the magnetic domains,boosting output efficiency.These findings demonstrate the potential of Fe_(3)O_(4) nanoparticles to enhance electrostatic and magnetic interactions in triboelectric nanogenerators,leading to improved energy-harvesting performance.This approach presents a promising strategy for developing high-performance triboelectric nanogenerators for sustainable energy and sensor applications.展开更多
The kineties of non-isothermal crystallization of Nylon-1010 has been investigated by using differential scanning calorimetry(DSC), DSC curves were obtained under cooling rate(R): 2. 5, 5, 10, 20, 40K/min. Applying Ma...The kineties of non-isothermal crystallization of Nylon-1010 has been investigated by using differential scanning calorimetry(DSC), DSC curves were obtained under cooling rate(R): 2. 5, 5, 10, 20, 40K/min. Applying Mandelkern and Ziabicki theories, the values of the Z kinetic parameter and G the kinetic crystalllzab- ility have been determined. Expenents of Avrami obtained in this work decrease with increase of cooling rate and then level off. The experimental results show disagreements with the Ozawa equation.展开更多
Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred ...Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred to as a cord ply. These layers are strategically positioned within the tyre’s internal structure, particularly in the tread and sidewall areas, to improve handling, durability and impact resistance. The cord fabric also serves a critical role in maintaining the structural integrity of the tyre, ensuring that it retains its contour and resists deformations under different operating conditions. This study discusses the advantages and disadvantages of using Nylon 6 (NY6) and Nylon 66 (NY66) cord fabrics in scooter tire production, with a focus on their mechanical behavior under varying curing temperatures and pressures. It was observed that while the curing time for both NY6 and NY66 remained consistent across different platen temperatures and pressures, their mechanical properties showed significant differences. NY6, known for its flexibility and impact resistance, exhibited greater changes in cord-breaking strength and elongation with increasing temperature, showing a marked decrease in breaking strength at higher temperatures. In contrast, NY66 maintained better stability and performance under similar conditions.展开更多
A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylo...A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylon matrix was observed with SEM. The crystal structure of nanocomposites was characterized by means of XRD. SEM analysis shows that La2O3 nanoparticles are uniformly dispersed in MC nylon matrix and little clustering exists when the content of nano- La2O3 is lower than 1%, however, when the content of nano-La2O3 is more than 1%, it begins to cluster. XRD analysis indicats that nano-La2O3 does not change the crystal structure of MC nylon. Mechanical properties tests show that the tensile strength, elongation at break, impact strength, flexural strength, and flexural modulus of nanocomposites first increase then decrease as the content of nano-La2O3 is increased. When the content of nano-La2O3 is 0.5%, the tensile strength and elongation at break of nanocomposites reach maximum, which are 17.9% and 52.1% higher respectively than those of MC nylon. When the content of nano-La2O3 is 1.0%, the impact strength, flexural strength and flexural modulus of nanocomposites reach maximum, which are 36.6 %, 12.7 % and 16.3 % higher respectively than those of MC nylon.展开更多
Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon ...Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.展开更多
Nylon 10 T and Nylon 10T/1010 samples were synthesized by direct melt polymerization. The non-isothermal crystallization kinetics of Nylon 10 T and Nylon 10T/1010 was investigated by means of differential scanning cal...Nylon 10 T and Nylon 10T/1010 samples were synthesized by direct melt polymerization. The non-isothermal crystallization kinetics of Nylon 10 T and Nylon 10T/1010 was investigated by means of differential scanning calorimetry(DSC). Jeziorny equation and Mo equation were applied to describe the non-isothermal crystallization kinetics of the Nylon 10 T and the Nylon 10T/1010. The activation energies for non-isothermal crystallization were obtained by Vyazovkin's method and Friedman's method, respectively. These results showed that Jeziorny equation and Mo equation well described the non-isothermal crystallization kinetics of the Nylon 10 T and the Nylon 10T/1010. It was found that the values of the activation energy for non-isothermal crystallization of the Nylon 10T/1010 were lower than those of the Nylon 10 T at a given temperature or relative crystallinity degree,which revealed that crystallization ability of the Nylon 10T/1010 was higher. The crystal morphology was observed by means of a polarized optical microscope(POM) and X-ray diffraction(XRD). It was found that the addition of sebacic acid comonomer not only did not change the crystal form of the Nylon 10 T, but also significantly increased the number and decreased the size of spherulites. Comparing with the Nylon 10 T, the crystallization rate was increased with the addition of the sebacic acid comonomer.展开更多
Natural rubber grafted maleic anhydride (NR-g-MAH) was synthesized by mixing maleic anhydride (MAH) and natural rubber (NR) in solid state in a torque rheometer using dicurnyl peroxide (DCP) as initiator. Then...Natural rubber grafted maleic anhydride (NR-g-MAH) was synthesized by mixing maleic anhydride (MAH) and natural rubber (NR) in solid state in a torque rheometer using dicurnyl peroxide (DCP) as initiator. Then the self-prepared NR-g-MAH was used as a compatibilizer in the natural rubber/short nylon fiber composites. Both the fimctionalization of NR with MAH and the reaction between the modified rubber and the nylon fiber were confirmed by Fourier transform infrared spectroscopy (FTIR). Composites with different nylon short fiber loadings (0, 5, 10, 15 and 20 phr) were compounded on a two-roll mill, and the effects of the NR-g-MAH on the tensile and thermal properties, fiber-rubber interaction, as well as the morphology of the natural rubber/short nylon fiber composites were investigated. At equal fiber loading, the NR-g-MAH compatibilized NR/short nylon fiber composites showed improved tensile properties, especially the tensile modulus at 100% strain which was about 1.5 times that of the corresponding un-compatibilized ones. The equilibrium swelling tests proved that the incorporation of NR-g-MAH increased the interaction between the nylon fibers and the NR matrix. The crosslink density measured with NMR techniques showed that the NR-g-MAH compatiblized composites had lower total crosslink density. The glass transition temperatures of the compatibilized composites were about 1 K higher than that of the corresponding un-compabilized ones. Morphology analysis of the NR/short nylon fiber composites confirmed NR-g-MAH improved interfacial bonding between the NR matrix and the nylon fibers. All these results signified that the NR-g-MAH could act as a good compatilizer of NR/short nylon fiber composites and had a potential for wide use considering its easy to be prepared and compounded with the composites.展开更多
To improve tribological property of MC Nylon6, the glass fiber and fly ash reinforced monomer casting nylon compogites (GFFAPA) were prepared by anionic polymerization of e-caprolactam. The friction and wear behavio...To improve tribological property of MC Nylon6, the glass fiber and fly ash reinforced monomer casting nylon compogites (GFFAPA) were prepared by anionic polymerization of e-caprolactam. The friction and wear behaviors of composites under dry condition, water lubrication and oil lubrication were investigated through a ring-black wear tester. Worn surfaces were analyzed using a scanning electron microscope. The experimental results show that the tensile strength and hardness of nylon composites are obviously improved with reinforcement increasing. Compared to MC nylon, the lowest friction coefficient and wear rate of glass fiber reinforced nylon composites (GFPA) with GF30% respectively decrease by 33.1% and 65.3%, of fly ash reinforced nylon composites (FAPA) with FA20% decrease by 5.2% and 68.9% and of GFFAPA composites with GF30% and FA10% decrease by 57.8% and 89.9%. The main wear mechanisms of FAPA composites are adhesive and abrasive wear and of GFPA composites with high proportion are abrasive and fatigue wear. The wom surfaces of GFFAPA composites are much multiplex and the optional distributing glass fiber and fly ash have a synergetic effect on the wear resistance for GFFAPA composites. Compared with dry friction, the friction coefficient and wear rate under oil lubricated conditions decrease sharply while the latter reversely increase under water lubricated conditions. The wear mechanisms under water lubricated condition are principally chemical corrosion wear and abrasive wear and they become boundary friction under oil lubricated condition.展开更多
文摘On May 19,2025,the groundbreaking ceremony for the Phase I of the nylon fiber project of Colorful Nylon Fiber Co.,Ltd.(a subsidiary of Eversun Corporation),was held in the Dat Do Industrial Park in Vung Tau Province,Vietnam.Representatives from the Eversun Corporation,the local government of Vietnam,the Vung Tau Industrial Park,and cooperative enterprises jointly witnessed this important moment.Jiangen Wang,General Manager of Eversun Corporation,Yuxin Chen,General Manager of Resultant Construction Co.,Ltd.,and Youtong Chen,Deputy Director of Dat Do Industrial Park Management Committee attended the ceremony.
文摘Polymer gears are increasingly replacing metal gears in applications with low to medium torque.Traditionally,polymer gears have been manufactured using injection molding,but additive manufacturing(AM)is becoming increasingly common.Among the different types of polymer gears,nylon gears are particularly popular.However,there is currently very limited understanding of the wear resistance of nylon gears and of the impact of the manufacturing method on gear wear performance.The aims of this work are(a)to study the wear process of nylon gears made using the conventional injection molding method and two popularly used AM methods,namely,fused deposition modeling and selective laser sintering,(b)to compare and understand the wear performance by monitoring the evolution of the gear surfaces of the teeth,and(c)to study the effect of wear on the gear dynamics by analyzing gearbox vibration signals.This article presents experimental work,data analysis of the wear processes using molding and image analysis techniques,as well as the vibration data collected during gear wear tests.It also provides key results and further insights into the wear performance of the tested nylon gears.The information gained in this study is useful for better understanding the degradation process of additively manufactured nylon gears.
文摘This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe_(3)O_(4) nanoparticles into nylon films using a spray coating technique.Five triboelectric nanogenerator prototypes were created:one with regular nylon and four with nylon/Fe_(3)O_(4) nanocomposites featuring varying nanoparticle densities.The electrical output,measured by open-circuit voltage and short-circuit current,showed significant improvements in the nanocomposite-based triboelectric nanogenerators compared to the nylon-only triboelectric nanogenerator.When a weak magnetic field was applied during nanocomposite preparation,the maximum voltage and current reached 56.3 V and 4.62μA,respectively.Further analysis revealed that the magnetic field during the drying process aligned the magnetic domains,boosting output efficiency.These findings demonstrate the potential of Fe_(3)O_(4) nanoparticles to enhance electrostatic and magnetic interactions in triboelectric nanogenerators,leading to improved energy-harvesting performance.This approach presents a promising strategy for developing high-performance triboelectric nanogenerators for sustainable energy and sensor applications.
文摘The kineties of non-isothermal crystallization of Nylon-1010 has been investigated by using differential scanning calorimetry(DSC), DSC curves were obtained under cooling rate(R): 2. 5, 5, 10, 20, 40K/min. Applying Mandelkern and Ziabicki theories, the values of the Z kinetic parameter and G the kinetic crystalllzab- ility have been determined. Expenents of Avrami obtained in this work decrease with increase of cooling rate and then level off. The experimental results show disagreements with the Ozawa equation.
文摘Cord fabric is a critical material used in the manufacture of tyres and various composite materials to increase durability and strength. The tyre consists of many layers of cord fabric, with each layer being referred to as a cord ply. These layers are strategically positioned within the tyre’s internal structure, particularly in the tread and sidewall areas, to improve handling, durability and impact resistance. The cord fabric also serves a critical role in maintaining the structural integrity of the tyre, ensuring that it retains its contour and resists deformations under different operating conditions. This study discusses the advantages and disadvantages of using Nylon 6 (NY6) and Nylon 66 (NY66) cord fabrics in scooter tire production, with a focus on their mechanical behavior under varying curing temperatures and pressures. It was observed that while the curing time for both NY6 and NY66 remained consistent across different platen temperatures and pressures, their mechanical properties showed significant differences. NY6, known for its flexibility and impact resistance, exhibited greater changes in cord-breaking strength and elongation with increasing temperature, showing a marked decrease in breaking strength at higher temperatures. In contrast, NY66 maintained better stability and performance under similar conditions.
文摘A series of La2O3/MC nylon nanocomposites were prepared via in situ polymerization. The effects of content of nano-La2O3 on the mechanical properties of nanocomposites were studied. Dispersion of nano-La2O3 in MC nylon matrix was observed with SEM. The crystal structure of nanocomposites was characterized by means of XRD. SEM analysis shows that La2O3 nanoparticles are uniformly dispersed in MC nylon matrix and little clustering exists when the content of nano- La2O3 is lower than 1%, however, when the content of nano-La2O3 is more than 1%, it begins to cluster. XRD analysis indicats that nano-La2O3 does not change the crystal structure of MC nylon. Mechanical properties tests show that the tensile strength, elongation at break, impact strength, flexural strength, and flexural modulus of nanocomposites first increase then decrease as the content of nano-La2O3 is increased. When the content of nano-La2O3 is 0.5%, the tensile strength and elongation at break of nanocomposites reach maximum, which are 17.9% and 52.1% higher respectively than those of MC nylon. When the content of nano-La2O3 is 1.0%, the impact strength, flexural strength and flexural modulus of nanocomposites reach maximum, which are 36.6 %, 12.7 % and 16.3 % higher respectively than those of MC nylon.
基金Supported by the Natural Science Foundation of Zhejiang Province(LY15B060006)the National Natural Science Foundation of China(21104066)the Zhejiang Province Public Technology Research and Industrial Grant(2012C21078)
文摘Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.
基金Supported by the National Science and Technology Support Program of China(No.2013BAE02B01)the Special Project on the Integration of Industry,Education and Research of Guangdong Province(No.2013B090500003)the Commissioner Workstation Project of Guangdong Province(No.2014A090906002)
文摘Nylon 10 T and Nylon 10T/1010 samples were synthesized by direct melt polymerization. The non-isothermal crystallization kinetics of Nylon 10 T and Nylon 10T/1010 was investigated by means of differential scanning calorimetry(DSC). Jeziorny equation and Mo equation were applied to describe the non-isothermal crystallization kinetics of the Nylon 10 T and the Nylon 10T/1010. The activation energies for non-isothermal crystallization were obtained by Vyazovkin's method and Friedman's method, respectively. These results showed that Jeziorny equation and Mo equation well described the non-isothermal crystallization kinetics of the Nylon 10 T and the Nylon 10T/1010. It was found that the values of the activation energy for non-isothermal crystallization of the Nylon 10T/1010 were lower than those of the Nylon 10 T at a given temperature or relative crystallinity degree,which revealed that crystallization ability of the Nylon 10T/1010 was higher. The crystal morphology was observed by means of a polarized optical microscope(POM) and X-ray diffraction(XRD). It was found that the addition of sebacic acid comonomer not only did not change the crystal form of the Nylon 10 T, but also significantly increased the number and decreased the size of spherulites. Comparing with the Nylon 10 T, the crystallization rate was increased with the addition of the sebacic acid comonomer.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China and Guangdong Province(No.U1134005)
文摘Natural rubber grafted maleic anhydride (NR-g-MAH) was synthesized by mixing maleic anhydride (MAH) and natural rubber (NR) in solid state in a torque rheometer using dicurnyl peroxide (DCP) as initiator. Then the self-prepared NR-g-MAH was used as a compatibilizer in the natural rubber/short nylon fiber composites. Both the fimctionalization of NR with MAH and the reaction between the modified rubber and the nylon fiber were confirmed by Fourier transform infrared spectroscopy (FTIR). Composites with different nylon short fiber loadings (0, 5, 10, 15 and 20 phr) were compounded on a two-roll mill, and the effects of the NR-g-MAH on the tensile and thermal properties, fiber-rubber interaction, as well as the morphology of the natural rubber/short nylon fiber composites were investigated. At equal fiber loading, the NR-g-MAH compatibilized NR/short nylon fiber composites showed improved tensile properties, especially the tensile modulus at 100% strain which was about 1.5 times that of the corresponding un-compatibilized ones. The equilibrium swelling tests proved that the incorporation of NR-g-MAH increased the interaction between the nylon fibers and the NR matrix. The crosslink density measured with NMR techniques showed that the NR-g-MAH compatiblized composites had lower total crosslink density. The glass transition temperatures of the compatibilized composites were about 1 K higher than that of the corresponding un-compabilized ones. Morphology analysis of the NR/short nylon fiber composites confirmed NR-g-MAH improved interfacial bonding between the NR matrix and the nylon fibers. All these results signified that the NR-g-MAH could act as a good compatilizer of NR/short nylon fiber composites and had a potential for wide use considering its easy to be prepared and compounded with the composites.
基金Funded by the National High-Tech Projects('863' Program) (No.2002AA2Z4141)
文摘To improve tribological property of MC Nylon6, the glass fiber and fly ash reinforced monomer casting nylon compogites (GFFAPA) were prepared by anionic polymerization of e-caprolactam. The friction and wear behaviors of composites under dry condition, water lubrication and oil lubrication were investigated through a ring-black wear tester. Worn surfaces were analyzed using a scanning electron microscope. The experimental results show that the tensile strength and hardness of nylon composites are obviously improved with reinforcement increasing. Compared to MC nylon, the lowest friction coefficient and wear rate of glass fiber reinforced nylon composites (GFPA) with GF30% respectively decrease by 33.1% and 65.3%, of fly ash reinforced nylon composites (FAPA) with FA20% decrease by 5.2% and 68.9% and of GFFAPA composites with GF30% and FA10% decrease by 57.8% and 89.9%. The main wear mechanisms of FAPA composites are adhesive and abrasive wear and of GFPA composites with high proportion are abrasive and fatigue wear. The wom surfaces of GFFAPA composites are much multiplex and the optional distributing glass fiber and fly ash have a synergetic effect on the wear resistance for GFFAPA composites. Compared with dry friction, the friction coefficient and wear rate under oil lubricated conditions decrease sharply while the latter reversely increase under water lubricated conditions. The wear mechanisms under water lubricated condition are principally chemical corrosion wear and abrasive wear and they become boundary friction under oil lubricated condition.