Magnesium composites reinforced by N-deficient Ti_(2)AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional(3D)co-continuous porous Ti_(2)AlN_(x)(x=0.9,1.0)preforms.The relations...Magnesium composites reinforced by N-deficient Ti_(2)AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional(3D)co-continuous porous Ti_(2)AlN_(x)(x=0.9,1.0)preforms.The relationship between their mechanical properties and micro-structure is discussed with the assessment of 2D and 3D characterization.X-ray diffraction(XRD)and scanning electron microscopy detected no impurities.The 3D reconstruction shows that the uniformly distributed pores in Ti_(2)AlN_(x) preforms are interconnected,which act as infiltra-tion tunnels for the melt Mg.The compressive yield strength and microhardness of Ti_(2)AlN_(0.9)/Mg are 353 MPa and 1.12 GPa,respectively,which are 8.55%and 6.67%lower than those of Ti_(2)AlN/Mg,respectively.The typical delamination and kink band occurred in Ti_(2)AlN_(x) under compressive and Vickers hardness(V_(H))tests.Owing to the continuous skeleton structure and strong interfacial bonding strength,the crack ini-tiated in Ti_(2)AlN_(x) was blocked by the plastic Mg matrix.This suggests the possibility of regulating the mechanical performance of Ti_(2)AlN/Mg composites by controlling the N vacancy and the hierarchical structure of Ti_(2)AlN skeleton.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52175284)the State Key Lab of Advanced Metals and Materials(No.2021-ZD08)the Beijing Government Funds for the Cons tructive Project of Central Universities(No.353139535)。
文摘Magnesium composites reinforced by N-deficient Ti_(2)AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional(3D)co-continuous porous Ti_(2)AlN_(x)(x=0.9,1.0)preforms.The relationship between their mechanical properties and micro-structure is discussed with the assessment of 2D and 3D characterization.X-ray diffraction(XRD)and scanning electron microscopy detected no impurities.The 3D reconstruction shows that the uniformly distributed pores in Ti_(2)AlN_(x) preforms are interconnected,which act as infiltra-tion tunnels for the melt Mg.The compressive yield strength and microhardness of Ti_(2)AlN_(0.9)/Mg are 353 MPa and 1.12 GPa,respectively,which are 8.55%and 6.67%lower than those of Ti_(2)AlN/Mg,respectively.The typical delamination and kink band occurred in Ti_(2)AlN_(x) under compressive and Vickers hardness(V_(H))tests.Owing to the continuous skeleton structure and strong interfacial bonding strength,the crack ini-tiated in Ti_(2)AlN_(x) was blocked by the plastic Mg matrix.This suggests the possibility of regulating the mechanical performance of Ti_(2)AlN/Mg composites by controlling the N vacancy and the hierarchical structure of Ti_(2)AlN skeleton.