This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atom...This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atomic force microscope to precisely move the gold tip close to the NV center,while simultaneously employing a home-made confocal microscope to monitor the fluorescence of the NV center.This approach allows for lateral super-resolution,achieving a full width at half maximum(FWHM)of 38.0 nm and a location uncertainty of 0.7 nm.Additionally,we show the potential of this method for determining the depth of the NV centers.We also attempt to determine the depth of the NV centers in combination with finite-difference time-domain(FDTD)simulations.Compared to other depth determination methods,this approach allows for simultaneous lateral and longitudinal localization of individual NV centers,and holds promise for facilitating manipulation of the local environment surrounding the NV center.展开更多
Catalytic oxidation plays a crucial role in chemical industry,in which the utilization of abundant and environmental-friendly oxygen(O_(2))as oxidant aligns with sustainable development principles in green chemistry.H...Catalytic oxidation plays a crucial role in chemical industry,in which the utilization of abundant and environmental-friendly oxygen(O_(2))as oxidant aligns with sustainable development principles in green chemistry.However,the intrinsic inertness of ground-state O_(2) molecule poses a long-standing challenge in developing an efficient non-noble metal-based catalyst.Herein,inspired by the electron transfer process in respiratory chain,we engineered long-range N_(V) to mediate Fe_(1) center for O_(2) activation in aerobic oxidation.Combined in/quasi-situ spectroscopic characterizations and control experiments suggest the Fe_(1) site efficiently adsorbs O_(2),and the N_(V) site facilitates electron delocalization to adjacent Fe_(1),providing efficient transformation of O_(2) to reactive oxygen species that boost oxidation reactions mildly.This Fe_(1)--N_(V) single-atom catalyst demonstrates outstanding catalytic performance in aerobic oxidations of alkanes,N-heterocycles,alcohols,and amines under relatively mild conditions.Our findings offer a new perspective for designing high-efficiency heterogeneous catalysts in aerobic oxidations,promising various potential applications.展开更多
基金supported by the National Natural Science Foundation of China(T2325023,92265204,12104447)the National Key R&D Program of China(2023YFF0718400)+1 种基金the Innovation Program for Quantum Science and Technology(2021ZD0302200)the Fundamental Research Funds for the Central Universities。
文摘This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atomic force microscope to precisely move the gold tip close to the NV center,while simultaneously employing a home-made confocal microscope to monitor the fluorescence of the NV center.This approach allows for lateral super-resolution,achieving a full width at half maximum(FWHM)of 38.0 nm and a location uncertainty of 0.7 nm.Additionally,we show the potential of this method for determining the depth of the NV centers.We also attempt to determine the depth of the NV centers in combination with finite-difference time-domain(FDTD)simulations.Compared to other depth determination methods,this approach allows for simultaneous lateral and longitudinal localization of individual NV centers,and holds promise for facilitating manipulation of the local environment surrounding the NV center.
文摘Catalytic oxidation plays a crucial role in chemical industry,in which the utilization of abundant and environmental-friendly oxygen(O_(2))as oxidant aligns with sustainable development principles in green chemistry.However,the intrinsic inertness of ground-state O_(2) molecule poses a long-standing challenge in developing an efficient non-noble metal-based catalyst.Herein,inspired by the electron transfer process in respiratory chain,we engineered long-range N_(V) to mediate Fe_(1) center for O_(2) activation in aerobic oxidation.Combined in/quasi-situ spectroscopic characterizations and control experiments suggest the Fe_(1) site efficiently adsorbs O_(2),and the N_(V) site facilitates electron delocalization to adjacent Fe_(1),providing efficient transformation of O_(2) to reactive oxygen species that boost oxidation reactions mildly.This Fe_(1)--N_(V) single-atom catalyst demonstrates outstanding catalytic performance in aerobic oxidations of alkanes,N-heterocycles,alcohols,and amines under relatively mild conditions.Our findings offer a new perspective for designing high-efficiency heterogeneous catalysts in aerobic oxidations,promising various potential applications.