In this paper the distributed asymptotic consensus problem is addressed for a group of high-order nonaffine agents with uncertain dynamics,nonvanishing disturbances and unknown control directions under directed networ...In this paper the distributed asymptotic consensus problem is addressed for a group of high-order nonaffine agents with uncertain dynamics,nonvanishing disturbances and unknown control directions under directed networks.A class of auxiliary variables are first introduced which forms second-order filters and induces all measurable signals of agents’states.In view of this property,a distributed robust integral of the sign of the error(DRISE)design combined with the Nussbaum-type function is presented that guarantees not only the desired asymptotic consensus,but also the uniform boundedness of all closed-loop variables.Compared with the traditional sliding mode control(SMC)technique,the main feature of our approach is that the integral operation in the proposed control algorithm is designed to be adopted in a continuous manner and ensures less chattering behavior.Simulation results for a group of Duffing-Holmes chaotic systems are employed to verify our theoretical analysis.展开更多
This paper addresses a three-dimensional(3D)trajectory tracking problem of underactuated autonomous underwater vehicles(AUVs)subjected to input saturation and external disturbances.The proposed controller can achieve ...This paper addresses a three-dimensional(3D)trajectory tracking problem of underactuated autonomous underwater vehicles(AUVs)subjected to input saturation and external disturbances.The proposed controller can achieve practical convergence of tracking errors for general reference trajectories,including persistently exciting(PE)time varying trajectories and fixed points.At first,a modified error state formulation is introduced to tackle the situation that desired velocities do not satisfy PE condition.Then,on the basis of the backstepping technique and a Nussbaum-type even function,a saturated controller is designed so that the tracking errors can converge to a bounded neighborhood of the origin.The stability analysis based on Lyapunov theory shows that the tracking errors are globally ultimately uniformly bounded.Finally,some simulation results illustrate the effectiveness and robustness of the proposed control strategy.展开更多
This paper investigates a global asymptotic regulation control problem for a class of nonlinear systems with dynamic uncertainties.The requirement of a priori knowledge of control directions is removed and the inverse...This paper investigates a global asymptotic regulation control problem for a class of nonlinear systems with dynamic uncertainties.The requirement of a priori knowledge of control directions is removed and the inverse dynamics satisfy the weaker integral input-to-state stable condition.By application of the changing supply rates and the Nussbaum-type gain techniques,a partial state-feedback regulator is constructed.The main results demonstrate that the designed controller ensures the system state converges to the origin whereas the other signals of the closed-loop system are bounded. Simulation results are illustrated to show the effectiveness of the proposed approach.展开更多
In this study,we present the convergence of time-varying net works.Then,we apply the convergence property to cooperative control of nonlinear multiagent systems(MASs)with unknown control directions(UCDs),and illustrat...In this study,we present the convergence of time-varying net works.Then,we apply the convergence property to cooperative control of nonlinear multiagent systems(MASs)with unknown control directions(UCDs),and illustrate a new kind of Nussbaum-type function based control algorithms.It is proven that if the time-varying net works are cut-balance,the convergence of nonlinear MASs with nonidentical UCDs is achieved using the presented algorithms.A critical feature of this application is that the designed algorithms can deal with nonidentical UCDs by employing conventional Nussbaum-type functions.Finally,one simulation example is given to illustrate the effectiveness of the presented algorithms.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(61973074,61921004,U1713209).
文摘In this paper the distributed asymptotic consensus problem is addressed for a group of high-order nonaffine agents with uncertain dynamics,nonvanishing disturbances and unknown control directions under directed networks.A class of auxiliary variables are first introduced which forms second-order filters and induces all measurable signals of agents’states.In view of this property,a distributed robust integral of the sign of the error(DRISE)design combined with the Nussbaum-type function is presented that guarantees not only the desired asymptotic consensus,but also the uniform boundedness of all closed-loop variables.Compared with the traditional sliding mode control(SMC)technique,the main feature of our approach is that the integral operation in the proposed control algorithm is designed to be adopted in a continuous manner and ensures less chattering behavior.Simulation results for a group of Duffing-Holmes chaotic systems are employed to verify our theoretical analysis.
基金the National Natural Science Founda-tion of China(No.51309133)。
文摘This paper addresses a three-dimensional(3D)trajectory tracking problem of underactuated autonomous underwater vehicles(AUVs)subjected to input saturation and external disturbances.The proposed controller can achieve practical convergence of tracking errors for general reference trajectories,including persistently exciting(PE)time varying trajectories and fixed points.At first,a modified error state formulation is introduced to tackle the situation that desired velocities do not satisfy PE condition.Then,on the basis of the backstepping technique and a Nussbaum-type even function,a saturated controller is designed so that the tracking errors can converge to a bounded neighborhood of the origin.The stability analysis based on Lyapunov theory shows that the tracking errors are globally ultimately uniformly bounded.Finally,some simulation results illustrate the effectiveness and robustness of the proposed control strategy.
基金supported by the National Natural Science Foundation of China under Grant Nos.60674027, 60974127,and 60904022the Key Project Foundation of the Educational Ministry under Grant No.208074the Innovation Program of Graduate Students of Jiangsu Province of China under Grant No.CXZZ11_0155
文摘This paper investigates a global asymptotic regulation control problem for a class of nonlinear systems with dynamic uncertainties.The requirement of a priori knowledge of control directions is removed and the inverse dynamics satisfy the weaker integral input-to-state stable condition.By application of the changing supply rates and the Nussbaum-type gain techniques,a partial state-feedback regulator is constructed.The main results demonstrate that the designed controller ensures the system state converges to the origin whereas the other signals of the closed-loop system are bounded. Simulation results are illustrated to show the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Nos.61973074,U1713209,61520106009,and 61533008)the National Key R&D Program of China(No.2018AAA0101400)+1 种基金the Science and Technology on Information System Engineering Laboratory,China(No.05201902)the Fundamental Research Funds for the Central Universities,China ORCID。
文摘In this study,we present the convergence of time-varying net works.Then,we apply the convergence property to cooperative control of nonlinear multiagent systems(MASs)with unknown control directions(UCDs),and illustrate a new kind of Nussbaum-type function based control algorithms.It is proven that if the time-varying net works are cut-balance,the convergence of nonlinear MASs with nonidentical UCDs is achieved using the presented algorithms.A critical feature of this application is that the designed algorithms can deal with nonidentical UCDs by employing conventional Nussbaum-type functions.Finally,one simulation example is given to illustrate the effectiveness of the presented algorithms.