期刊文献+
共找到9,553篇文章
< 1 2 250 >
每页显示 20 50 100
Numerous liver abscesses after transjugular intrahepatic portosystemic shunt for decompensated liver cirrhosis:A case report
1
作者 Shi-Hua Luo Zhao-Han Wang +1 位作者 Jie Chen Jian-Yong Chen 《World Journal of Radiology》 2025年第2期38-44,共7页
BACKGROUND Liver cirrhosis patients can develop various complications including bacteremia as the intestinal flora is heterologous.In those with low immunity,trauma,or following surgery,etc.,the body is susceptible to... BACKGROUND Liver cirrhosis patients can develop various complications including bacteremia as the intestinal flora is heterologous.In those with low immunity,trauma,or following surgery,etc.,the body is susceptible to concurrent systemic or local infections.Under these circumstances,even minimally invasive treatment methods such as interventional therapy like transjugular intrahepatic portosystemic shunt(TIPS)for liver cirrhosis patients can also result in complications such as infections.CASE SUMMARY A male patient with decompensated cirrhosis experienced multiple episodes of gastrointestinal bleeding and hypersplenism.He was admitted to hospital due to voluntary remedial TIPS.The patient developed a numerous intrahepatic liver abscess postoperatively.Following initial conservative treatment with intravenous antibiotics and parenteral nutrition,three months after TIPS,the liver abscess had disappeared on imaging examination.At the 6-month postoperative follow-up,outpatient re-examination showed that the patient had recovered and the liver abscess had resolved.CONCLUSION Attention should be paid to decreased blood cell counts,especially low leukocyte levels in patients with liver cirrhosis as the presence of intestinal microbiota dysregulation and portal pyemia can result in liver abscess and sepsis during invasive diagnostic and therapeutic procedures like TIPS.The addition of probiotics might reduce the risk in such patients. 展开更多
关键词 Liver cirrhosis Portal hypertension Transjugular hepatic portosystemic shunt numerous liver abscesses Case report
暂未订购
Design of an Acoustic Levitator for Three-Dimensional Manipulation of Numerous Particles
2
作者 Di Wu De-Yao Yin +1 位作者 Zhi-Yuan Xiao Qing-Fan Shi 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第9期28-31,共4页
We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-... We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-air.By changing the phase difference of transducer arrays,three-dimensional manipulation of particles is successfully realized.Moreover,the relationship between the translation of particles and the phase difference is experimentally investigated,and the result is in agreement with the theoretical calculation.This design can expand the application of acoustic levitation in many fields,such as biomedicine,ultrasonic motor and new materials processing. 展开更多
关键词 DESIGN of an ACOUSTIC Levitator for THREE-DIMENSIONAL MANIPULATION of numerous PARTICLES
原文传递
Numerous unreported glacial lake outburst floods in the Third Pole revealed by high-resolution satellite data and geomorphological evidence
3
作者 Guoxiong Zheng Anming Bao +4 位作者 Simon Allen Juan Antonio Ballesteros-Cánovas Ye Yuan Guli Jiapaer Markus Stoffel 《Science Bulletin》 SCIE EI CSCD 2021年第13期1270-1273,M0003,共5页
The“Third Pole”usually refers to the Tibetan Plateau and surroundings as it is the largest glaciated zone on Earth after the Antarctic and Arctic[1].It is also one of the major hotspots in the world suffering from w... The“Third Pole”usually refers to the Tibetan Plateau and surroundings as it is the largest glaciated zone on Earth after the Antarctic and Arctic[1].It is also one of the major hotspots in the world suffering from widespread and severe glacial lake outburst flood(GLOF)hazard[2,3]. 展开更多
关键词 numerous Tibetan Plateau GLOF
原文传递
Numerical Simulation on Thermomechanical Coupling Process in Friction Stir-Assisted Wire Arc Additive Manufacturing
4
作者 Li Long Xiao Yichen +2 位作者 Shi Lei Chen Ji Wu Chuansong 《稀有金属材料与工程》 北大核心 2026年第1期1-8,共8页
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit... Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties. 展开更多
关键词 friction stir processing wire arc additive manufacturing numerical simulation thermomechanical coupling temperature field DEFORMATION
原文传递
Numerical Study on the Correlation Between Underwater Radiated Noise and Wake Evolution of a Rim-Driven Thruster
5
作者 Jie Gong Zhongwan Wu 《哈尔滨工程大学学报(英文版)》 2026年第1期15-31,共17页
In this investigation,a hybrid approach integrating the IDDES turbulence model and FW-H is employed to forecast the hydroacoustic of the rim driven thruster(RDT)under non-cavitation and uniform flow conditions at vary... In this investigation,a hybrid approach integrating the IDDES turbulence model and FW-H is employed to forecast the hydroacoustic of the rim driven thruster(RDT)under non-cavitation and uniform flow conditions at varying loading conditions(J=0.3 and J=0.6).It is revealed that the quadrupole term contribution in the P-FWH method significantly affects the monopole term in the low-frequency region,while it mainly affects the dipole term in the high-frequency region.Specifically,the overall sound pressure levels(SPL)of the RDT using the P-FWH method are 2.27 dB,10.03 dB,and 16.73 dB at the receiving points from R1 to R3 under the heavy-loaded condition,while they increase by 0.67 dB at R1,and decrease by 14.93 dB at R2,and 22.20 dB at R3,for the light-loaded condition.The study also utilizes the pressure-time derivatives to visualize the numerical noise and to pinpoint the dynamics of the vortex cores,and the optimization of the grid design can significantly reduce the numerical noise.The computational accuracy of the P-FWH method can meet the noise requirements for the preliminary design of rim driven thrusters. 展开更多
关键词 Rim-driven thruster HYDRODYNAMICS Underwater radiated noise Non-cavitation Numerical noise
在线阅读 下载PDF
Typhoon Kompasu(2118)simulation with planetary boundary layer and cloud physics parameterization improvements
6
作者 Xiaowei Tan Zhiqiu Gao Yubin Li 《Atmospheric and Oceanic Science Letters》 2026年第1期41-46,共6页
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred... This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure. 展开更多
关键词 Tropical cyclone Numerical simulation Planetary boundary layer parameterization SCHEME Cloud physics scheme
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
7
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
A high-throughput measurement of critical micelle concentrations based on absolute aggregation-caused quenching probes
8
作者 Xin Ji Aun Raza +3 位作者 Jianping Qi Yi Lu Haisheng He Wei Wu 《Journal of Pharmaceutical Analysis》 2025年第3期651-653,共3页
Amphiphiles,including surfactants,have emerged as indispensable elements in materials science and pharmaceutical science,and their functions are highly relying on the critical micelle concentration(CMC)[1,2].Numerous ... Amphiphiles,including surfactants,have emerged as indispensable elements in materials science and pharmaceutical science,and their functions are highly relying on the critical micelle concentration(CMC)[1,2].Numerous fluorimetry-based probes have been developed to measure CMCs[3](Fig.S1).However,CMC measurements using these probes suffer from a time-consuming and laborious procedure and large uncertainties,primarily due to their poor photo-stabilities and highly fluctuating fluorescence backgrounds. 展开更多
关键词 high throughput measurement photo stabilities fluorescence backgrounds critical micelle concentration cmc numerous materials science critical micelle concentration fluorimetry based probes absolute aggregation caused quenching
在线阅读 下载PDF
Effects of mesoscale gravity waves on sporadic E simulated by a one-dimensional dynamic model 被引量:1
9
作者 Xu Zhou ZeZhong Li +1 位作者 XinAn Yue LiBo Liu 《Earth and Planetary Physics》 EI CAS 2025年第1期1-9,共9页
In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G... In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases. 展开更多
关键词 sporadic E ion tidal layer gravity waves numerical simulation
在线阅读 下载PDF
Elucidating the process mechanism in Mg-to-Al friction stir lap welding enhanced by ultrasonic vibration 被引量:3
10
作者 Ming Zhai Lei Shi ChuanSong Wu 《Journal of Magnesium and Alloys》 2025年第1期338-355,共18页
The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further impr... The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%. 展开更多
关键词 Friction stir lap welding Mg-to-Al dissimilar alloys Ultrasonic vibration Numerical simulation Experimental investigation
在线阅读 下载PDF
Properties and structure investigation of the friction stir welding seam of the AA6061-T6 plates 被引量:2
11
作者 M.Soukieh W.Harara +2 位作者 H.Koudaimi M.Halak M.Kassem 《China Welding》 2025年第2期132-138,共7页
Friction stir welding(FSW)is a relatively new welding technique that has significant advantages compared to the fusion welding techniques in joining non weld able alloys by fusion,such as aluminum alloys.Three FSW sea... Friction stir welding(FSW)is a relatively new welding technique that has significant advantages compared to the fusion welding techniques in joining non weld able alloys by fusion,such as aluminum alloys.Three FSW seams of AA6061-T6 plates were made us-ing different FSW parameters.The structure of the FSW seams was investigated using X-ray diffraction(XRD),scanning electron mi-croscope(SEM)and non destructive testing(NDT)techniques and their hardness was also measured.The dominated phase in the AA6061-T6 alloy and the FSW seams was theα-Al.The FSW seam had lower content of the secondary phases than the AA6061-T6 al-loy.The hardness of the FSW seams was decreased by about 30%compared to the AA6061-T6 alloy.The temperature distributions in the weld seams were also studied experimentally and numerically modeled and the results were in a good agreement. 展开更多
关键词 AA6061-T6 Friction stir welding welding parameters temperature distribution numerical modeling FSW weld seam
在线阅读 下载PDF
Numerical simulation of the effect of hydrogen injection and oxygen enrichment interaction on PCI in a blast furnace 被引量:1
12
作者 Huan Liu Li Huang +3 位作者 Zhenyang Wang Alberto N.Conejo Jianliang Zhang Dawei Lan 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1551-1565,共15页
Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized... Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized coal co-injection in blast furnace tuyere was established through numerical simulation,and the effect of hydrogen injection and oxygen enrichment interaction on pulverized coal combustion and raceway smelting was investigated.The simulation results indicate that when the coal injection rate decreased from 36 to 30t/h and the hydrogen injection increased from 0 to 3600 m^(3)/h,the CO_(2)emissions decreased from 1860 to 1551 kg/t,which represents a16.6%reduction,and the pulverized coal burnout decreased from 70.1%to 63.7%.The heat released from hydrogen combustion can not only promote the volatilization of pulverized coal but also affect the combustion reaction between volatilization and oxygen,which resulted in a decrease in the temperature at the end of the raceway.Co-injection of hydrogen with PCI increased the wall temperature near the upper half part of the raceway and at the outlet of the tuyere,which required a high cooling efficiency to extend the service life of the blast furnace.The increase in oxygen level compensated for the decreased average temperature in the raceway due to hydrogen injection.The increase in the oxygen content by 3%while maintaining constant hydrogen and PCI injection rates increased the burnout and average raceway temperature by 4.2%and 43 K,respectively.The mole fraction of CO and H_(2) production increased by 0.04 and 0.02,respectively.Burnout can be improved through optimization of the particle size distribution of pulverized coal. 展开更多
关键词 blast furnace HYDROGEN pulverized coal injection BURNOUT numerical simulation
在线阅读 下载PDF
Flexural Performance of UHPC-Reinforced Concrete T-Beams:Experimental and Numerical Investigations 被引量:1
13
作者 Guangqing Xiao Xilong Chen +2 位作者 Lihai Xu Feilong Kuang Shaohua He 《Structural Durability & Health Monitoring》 2025年第5期1167-1181,共15页
This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated... This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders. 展开更多
关键词 UHPC thin layer T-BEAM REINFORCEMENT bending performance numerical simulation
在线阅读 下载PDF
Hydraulic characteristics of a large rotation-angle baffle-drop shaft through synergetic discharge from dry and wet sides 被引量:1
14
作者 Pei-de Liang Jun Chen +1 位作者 Teng Wu Jing Yan 《Water Science and Engineering》 2025年第1期115-124,共10页
To enhance the operational capacity and space utilization of baffle-drop shafts,this study improved the traditional baffle-drop shaft by expanding the wet-side space,incorporating large rotation-angle baffles,and inst... To enhance the operational capacity and space utilization of baffle-drop shafts,this study improved the traditional baffle-drop shaft by expanding the wet-side space,incorporating large rotation-angle baffles,and installing overflow holes in the dividing wall.A three-dimensional turbulent model was developed using ANSYS Fluent to simulate the hydraulic characteristics of both traditional and new baffle-drop shafts across various flow rates.The simulation results demonstrated that the new shaft design allowed for discharge from both the wet and dry sides,significantly improving operational capacity,with the dry side capable of handling 40%of the inlet flow.Compared to the traditional shaft,the new design reduced shaft wall pressures and decreased the mean and standard deviation of pressure on typical baffles by 21%and 63%,respectively,therefore enhancing structural safety.Additionally,the new shaft achieved a 2%-12%higher energy dissipation rate than the traditional shaft across different flow rates.This study offers valuable insights for the design and optimization of drop shafts in deep tunnel drainage systems. 展开更多
关键词 Baffle-drop shaft Synergetic discharge Fluent Numerical simulation Hydraulic characteristics
在线阅读 下载PDF
A sediment sampling system for monitoring plume redeposition from deep-sea polymetallic nodule mining 被引量:1
15
作者 Jiale Wu Jiawang Chen +8 位作者 Xinghui Tan Kaichuang Wang Jianling Zhou Zhangyong Jin Congchi Huang Yuan Lin Chunsheng Wang Junyi Yang Shiquan Lin 《International Journal of Mining Science and Technology》 2025年第11期1975-1987,共13页
The spatiotemporal characterization of plume sedimentation and microorganisms is critical for developing plume ecological monitoring model.To address the limitations of traditional methods in obtaining high-quality se... The spatiotemporal characterization of plume sedimentation and microorganisms is critical for developing plume ecological monitoring model.To address the limitations of traditional methods in obtaining high-quality sediment,a novel sampling system with 6000 m operational capability and three-month endurance was developed.It is equipped with three sediment samplers,a set of formaldehyde preservation solution injection devices.The system is controlled by a low-power,timing-triggered controllers.To investigate low-disturbance rheological mechanisms,gap controlled rheological tests were conducted to optimize the structural design of the sampling and sealing assembly.Stress-controlled shear rheological tests were employed to investigate the mechanisms governing yield stress in sediments under varying temperature conditions and boundary roughness.Additionally,the coupled Eulerian-Lagrangian(CEL)method and sediment rheological constitutive models were employed to simulate tube-soil interaction dynamics and sediment disturbance.The radial heterogeneity of sediment disturbance and friction variation of the sampling tube were revealed.The tube was completely“plugged”at a penetration depth of 261 mm,providing critical data support to the penetration depth parameters.The deep-sea pressure test and South China Sea field trials demonstrated the system’s capability to collect and preserve quantitative time-series sediment samples with high fidelity. 展开更多
关键词 Plume sedimentation Numerical simulation Rheological test Time-series preservation Low-power control
在线阅读 下载PDF
Comprehensive analysis of free-surface vortex formation mechanisms:advancements and perspectives 被引量:1
16
作者 Zi-ming Wang Ben-chen Sun +3 位作者 Yue Li Sha Ji Xiao-bin Zhou Qiang Yue 《Journal of Iron and Steel Research International》 2025年第8期2183-2212,共30页
The free-surface vortex is a rotational flow phenomenon characterized by two-phase coupling,formed by the rupture of surface fluid in the final stage of discharge.It is a significant concept with broad applications in... The free-surface vortex is a rotational flow phenomenon characterized by two-phase coupling,formed by the rupture of surface fluid in the final stage of discharge.It is a significant concept with broad applications in engineering fields like metallurgy and hydraulics.The basic concepts and characteristics of free-surface vortices were introduced,and their hazards in various fields were discussed.The development of theoretical and numerical models over recent decades was reviewed,and the factors affecting vortex formation and existing suppression methods were outlined.Finally,the key challenges and focus areas on the study of free-surface vortex were summarized.With the ongoing advancements in computational fluid dynamics and experimental technology,research on free-surface vortices will become more in depth and precise.Additionally,interdisciplinary cooperation and technological innovation are expected to achieve precise control and optimal design of free-surface vortices,offering more efficient and sustainable solutions for metallurgy and related engineering fields. 展开更多
关键词 Free-surface vortex Numerical simulation Flow characteristics Vortex suppression
原文传递
A low Mach number asymptotic analysis of dissipation-reducing methods for curing shock instability 被引量:1
17
作者 Hongping GUO Xun WANG Zhijun SHEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期723-744,共22页
We are intrigued by the issues of shock instability,with a particular emphasis on numerical schemes that address the carbuncle phenomenon by reducing dissipation rather than increasing it.For a specific class of plana... We are intrigued by the issues of shock instability,with a particular emphasis on numerical schemes that address the carbuncle phenomenon by reducing dissipation rather than increasing it.For a specific class of planar flow fields where the transverse direction exhibits vanishing but non-zero velocity components,such as a disturbed onedimensional(1D)steady shock wave,we conduct a formal asymptotic analysis for the Euler system and associated numerical methods.This analysis aims to illustrate the discrepancies among various low-dissipative numerical algorithms.Furthermore,a numerical stability analysis of steady shock is undertaken to identify the key factors underlying shock-stable algorithms.To verify the stability mechanism,a consistent,low-dissipation,and shock-stable HLLC-type Riemann solver is presented. 展开更多
关键词 Riemann solver numerical shock instability low Mach number HLLC
在线阅读 下载PDF
Geo-interface modeling with material point method: A review 被引量:1
18
作者 Tiancheng Xie Honghu Zhu +4 位作者 Youkou Dong Mingliang Zhou Bin Wang Wei Zhang Jidong Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3950-3972,共23页
Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deforma... Geo-interfaces refer to the contact surfaces between multiple media within geological strata,as well as the transition zones that regulate the migration of three-phase matter,changes in physical states,and the deformation and stability of rock and soil masses.Owing to the combined effects of natural factors and human activities,geo-interfaces play crucial roles in the emergence,propagation,and triggering of geological disasters.Over the past three decades,the material point method(MPM)has emerged as a preferred approach for addressing large deformation problems and simulating soil-water-structure interactions,making it an ideal tool for analyzing geo-interface behaviors.In this review,we offer a systematic summary of the basic concepts,classifications,and main characteristics of the geo-interface,and provide a comprehensive overview of recent advances and developments in simulating geo-interface using the MPM.We further present a brief description of various MPMs for modeling different types of geo-interfaces in geotechnical engineering applications and highlight the existing limitations and future research directions.This study aims to facilitate innovative applications of the MPM in modeling complex geo-interface problems,providing a reference for geotechnical practitioners and researchers. 展开更多
关键词 Geo-interface Material point method(MPM) Interaction mechanism Large deformation Numerical simulation
在线阅读 下载PDF
Thermo-Hydrodynamic Characteristics of Hybrid Nanofluids for Chip-Level Liquid Cooling in Data Centers: A Review of Numerical Investigations 被引量:1
19
作者 Yifan Li Congzhe Zhu +2 位作者 Zhihan Lyu Bin Yang Thomas Olofsson 《Energy Engineering》 2025年第9期3525-3553,共29页
The growth of computing power in data centers(DCs)leads to an increase in energy consumption and noise pollution of air cooling systems.Chip-level cooling with high-efficiency coolant is one of the promising methods t... The growth of computing power in data centers(DCs)leads to an increase in energy consumption and noise pollution of air cooling systems.Chip-level cooling with high-efficiency coolant is one of the promising methods to address the cooling challenge for high-power devices in DCs.Hybrid nanofluid(HNF)has the advantages of high thermal conductivity and good rheological properties.This study summarizes the numerical investigations of HNFs in mini/micro heat sinks,including the numerical methods,hydrothermal characteristics,and enhanced heat transfer technologies.The innovations of this paper include:(1)the characteristics,applicable conditions,and scenarios of each theoretical method and numerical method are clarified;(2)the molecular dynamics(MD)simulation can reveal the synergy effect,micro motion,and agglomeration morphology of different nanoparticles.Machine learning(ML)presents a feasiblemethod for parameter prediction,which provides the opportunity for the intelligent regulation of the thermal performance of HNFs;(3)the HNFs flowboiling and the synergy of passive and active technologies may further improve the overall efficiency of liquid cooling systems in DCs.This review provides valuable insights and references for exploring the multi-phase flow and heat transport mechanisms of HNFs,and promoting the practical application of HNFs in chip-level liquid cooling in DCs. 展开更多
关键词 Data centers chip-level liquid cooling hybrid nanofluid energy transport characteristic hydrodynamic performance numerical investigation
在线阅读 下载PDF
Seismic responses and shattering cumulative effects of bedding parallel stepped rock slope:Model test and numerical simulation 被引量:1
20
作者 Chunlei Xin Fei Yang +2 位作者 Wenkai Feng Zhao Wang Wenhui Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2009-2030,共22页
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu... Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes. 展开更多
关键词 Rock slope stability Shaking table test Numerical simulation Permanent displacement Acceleration amplification factor
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部