The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ...The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity.展开更多
Deeply buried mountain tunnels are often exposed to the risk of rock bursts,which always cause serious damage to the supporting structures and threaten the safety of the engineers.Due to the limited data available,a s...Deeply buried mountain tunnels are often exposed to the risk of rock bursts,which always cause serious damage to the supporting structures and threaten the safety of the engineers.Due to the limited data available,a suitable approach to predict the rockburst tendency at the preliminary stage becomes very important.In this study,an integrated methodology combining 3D initial stress inversion and rockburst tendency prediction was developed and subsequently applied to a case study of the Sangzhuling Tunnel on the Sichuan–Tibet Railway.The numerical modelling involved inverting the initial stress field using a multiple linear regression method.The tunnel excavation was simulated separately by FDM and DEM,based on a stress boundary condition from the inverted stress field.The comparative analysis demonstrates that the rockburst ratio calculated using DEM(76.70%)exhibits a slight increase compared to FDM(75.38%),and the rockburst location is consistent with the actual situation.This suggests that DEM is more suitable for simulating the stress redistribution during excavation in a jointed rock mass.The numerical simulation combined with the deviatoric stress approach effectively predicts rockburst tendency,meeting the engineering requirements.Despite its limitations,numerical simulation remains a reliable method for predicting rock bursts.展开更多
Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately c...Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately controlling the blasting energy and achieving the directional fracture of a rock mass have become common problems in the field.A two-dimensional blasting(2D blasting)technique was proposed that utilizes the characteristic that the tensile strength of a rock mass is significantly lower than its compressive strength.After blasting,only a 2D crack surface is generated along the predetermined direction,eliminating the damage to the reserved rock mass caused by conventional blasting.However,the interior of a natural rock mass is a"black box",and the process of crack propagation is difficult to capture,resulting in an unclear 2D blasting mechanism.To this end,a single-hole polymethyl methacrylate(PMMA)test piece was used to conduct a 2D blasting experiment with the help of a high-speed camera to capture the dynamic crack propagation process and the digital image correlation(DIC)method to analyze the evolution law of surface strain on the test piece.On this basis,a three-dimensional(3D)finite element model was established based on the progressive failure theory to simulate the stress,strain,damage,and displacement evolution process of the model under 2D blasting.The simulation results were consistent with the experimental results.The research results reveal the 2D blasting mechanism and provide theoretical support for the application of 2D blasting technology in the field of rock excavation.展开更多
Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pr...Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure.However,when the outlet speed of the nozzle exceeds 400 m/s,investigating high-speed flash boiling atomization(HFBA)becomes quite challenging.This difficulty arises fromthe involvement ofmany complex physical processes and the requirement for a very fine mesh in numerical simulations.In this study,an HFBA model for gasoline direct injection(GDI)is established.This model incorporates primary and secondary atomization,as well as vaporization and boilingmodels,to describe the development process of the flash boiling spray.Compared to lowspeed FBA,these physical processes significantly impact HFBA.In this model,the Eulerian description is utilized for modeling the gas,and the Lagrangian description is applied to model the droplets,which effectively captures the movement of the droplets and avoids excessive mesh in the Eulerian coordinates.Under various conditions,numerical solutions of the Sauter mean diameter(SMD)for GDI show good agreement with experimental data,validating the proposed model’s performance.Simulations based on this HFBA model investigate the influences of fuel injection temperature and ambient pressure on the atomization process.Numerical analyses of the velocity field,temperature field,vapor mass fraction distribution,particle size distribution,and spray penetration length under different superheat degrees reveal that high injection temperature or low ambient pressure significantly affects the formation of small and dispersed droplet distribution.This effect is conducive to the refinement of spray particles and enhances atomization.展开更多
Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods...Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods.An abnormal radon exhalation behavior was observed,leading to computational fluid dynamics(CFD)-based simulations in which dynamic radon migration in a porous medium and accumulation chamber was considered.Based on the in-situ experimental and numerical simulation results,variations in the radon exhalation rate subject to permeability,flow rate,and insertion depth were quantified and analyzed.The in-situ radon exhalation rates measured using the flow-through method were higher than those measured using the closed-loop method,which could be explained by the negative pressure difference between the inside and outside of the chamber during the measurements.The consistency of the variations in the radon exhalation rate between the experiments and simulations suggests the reliability of CFD-based techniques in obtaining the dynamic evolution of transient radon exhalation rates for diffusion and convection at the porous medium-air interface.The synergistic effects of the three factors(insertion depth,flow rate,and permeability)on the negative pressure difference and measured exhalation rate were quantified,and multivariate regression models were established,with positive correlations in most cases;the exhalation rate decreased with increasing insertion depth at a permeability of 1×10^(−11) m^(2).CFD-based simulations can provide theoretical guidance for improving the flow-through method and thus achieve accurate measurements.展开更多
Accurate measurements of the radon exhalation rate help identify and evaluate radon risk regions in the environment.Among these measurement methods,the closed-loop method is frequently used.However,traditional experim...Accurate measurements of the radon exhalation rate help identify and evaluate radon risk regions in the environment.Among these measurement methods,the closed-loop method is frequently used.However,traditional experiments are insufficient or cannot analyze the radon migration and exhalation patterns at the gas–solid interface in the accumulation chamber.The CFD-based technique was applied to predict the radon concentration distribution in a limited space,allowing radon accumulation and exhalation inside the chamber intuitively and visually.In this study,three radon exhalation rates were defined,and two structural ventilation tubes were designed for the chamber.The consistency of the simulated results with the variation in the radon exhalation rate in a previous experiment or analytical solution was verified.The effects of the vent tube structure and flow rate on the radon uniformity in the chamber;permeability,insertion depth,and flow rate on the radon exhalation rate and the effective diffusion coefficient on back-diffusion were investigated.Based on the results,increasing the inser-tion depth from 1 to 5 cm decreased the effective decay constant by 19.55%,whereas the curve-fitted radon exhalation rate decreased(lower than the initial value)as the deviation from the initial value increased by approximately 7%.Increasing the effective diffusion coefficient from 2.77×10^(-7) to 7.77×10^(-6) m^(2) s^(-1) made the deviation expand from 2.14 to 15.96%.The conclusion is that an increased insertion depth helps reduce leakage in the chamber,subject to notable back-diffusion,and that the closed-loop method is reasonably used for porous media with a low effective diffusion coefficient in view of the back-diffusion effect.The CFD-based simulation is expected to provide guidance for the optimization of the radon exhalation rate measurement method and,thus,the accurate measurement of the radon exhalation rate.展开更多
As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary ...As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary to conduct flow analysis.In this study,numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ωmodel.The flow patterns in different segments of the lightning rod at the same reference wind speed(wind speed at a height of 10 m)and the flow patterns in the same segment at different reference wind speeds were investigated.The variations of lift coefficient,drag coefficient,and vorticity distribution were obtained.The results showed that vortex shedding phenomena occurred in all segments of the lightning rod,and the strength of vortex shedding increased with decreasing diameter.The vorticity magnitude and the root mean square magnitudes of the lift coefficient and drag coefficient also increased accordingly.The time history curves of the lift coefficient and drag coefficient on the surface of the lightning rod exhibited sinusoidal patterns with a single dominant frequency.For the same segment,as the wind speed increased in a certain range,the root mean square values of the lift coefficient and drag coefficient decreased,while their dominant frequencies increased.Moreover,there was a proportional relationship between the dominant frequencies of the lift coefficient and drag coefficient.The findings of this study can provide valuable insights for the refined design of lightning rods with similar structures.展开更多
It is one concern of the researchers how magnesium(Mg)alloys solidify under different conditions and how their microstructure evolves during solidification,and what are the relationship between the macroscopic propert...It is one concern of the researchers how magnesium(Mg)alloys solidify under different conditions and how their microstructure evolves during solidification,and what are the relationship between the macroscopic properties and various microstructures.Such issues are difficult to be revealed through experiments only,especially for the newly developed Mg alloys,for which there is a lack of more systematic and mature system.However,multi-scale modeling and simulation can promote and deepen our understanding of the microstructure and its deformation mechanism.In this paper,we review and summarize the recent research progress of numerical simulation of Mg alloys in forming and microstructure,namely casting,extrusion,rolling,and welding,using crystal plasticity finite element(CPFEM)and molecular dynamics(DM)methods.Besides,the methods and innovations of modeling are also summarized.Lastly,the paper discusses the development prospects and challenges of the numerical simulation in the field of Mg alloys.展开更多
A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radia...A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radiation, and convection. A formula for the calculation of the heat conductivity of a sintering system containing solid phase, liquid phase, and gas phase is given. Due to the continuous movement of the laser beam, a local coordinate system centered on the laser beam is used to simplify the analytical calculation. Assuming that it is approximately a Gaussian laser beam, the heat conduction equation is resolved based on the assumption of the thermal insulating boundary conditions and the fixed thermal physical parameters. The FORTRAN language is employed to compile the program to simulate the temperature field in the direct copper powder sintering process. It shows a good agreement with the preliminary experimental results.[KH3/4D]展开更多
The 3 D non isothermal flow of non Newtonian viscous polymer melt in a co rotating twin screw extruder is modeled. The distributions of the velocity, temperature, pressure and the viscous dissipation in the fl...The 3 D non isothermal flow of non Newtonian viscous polymer melt in a co rotating twin screw extruder is modeled. The distributions of the velocity, temperature, pressure and the viscous dissipation in the flow domain are presented by using a fluid dynamics analysis package (Polyflow). The numerical results show that the temperatures are high in the intermeshing region and on the screw surface, the maximum pressure and the minimum pressure occur in the intermeshing region, and the flow rate is almost proportional to the screw speed.展开更多
In this paper the differences between Meiyu and Baiu front in 1983 have firstly been analysed, the trajectories of air on and to the north side of Meiyu and Baiu fronts during the Meiyu period have then been traced, a...In this paper the differences between Meiyu and Baiu front in 1983 have firstly been analysed, the trajectories of air on and to the north side of Meiyu and Baiu fronts during the Meiyu period have then been traced, and the forecasting and simulating of 4 sets of Meiyu onset of the year have finally been run utilizing the global model at UK Me-leorological Office. The results show: 1) Meiyu fronts are different from Baiu ones in temperature, humidity and stratification fields in lower atmosphere; and the possibly reasons for it are explained. 2) The Bay of Bengal is the main moisture source for Meiyu front, the South China Sea and the Pacific, for Baiu ones; and some existed arguments on it are also discussed. 3) The onset of Meiyu and its rainfall and rain belts are sensitive to the Tibetan Plateau, and the water vapour conditions over the Bay of Bengal and the South China Sea, but not sensitive to the SST over the equatorial area or to the East of Japan.展开更多
Tangjiashan landslide is a typical high-speed landslide hosted on consequent bedding rock. The landslide was induced by Wenchuan earthquake at a medium-steep hill slope. The occurrence of Tangjiashan landslide was bas...Tangjiashan landslide is a typical high-speed landslide hosted on consequent bedding rock. The landslide was induced by Wenchuan earthquake at a medium-steep hill slope. The occurrence of Tangjiashan landslide was basically controlled by the tectonic structure, topography, stratum lithology, slope structure, seismic waves, and strike of river. Among various factors, the seismic loading with great intensity and long duration was dominant. The landslide initiation exhibited the local amplification effect of seismic waves at the rear of the slope, the dislocation effect on the fault, and the shear failure differentiating effect on the regions between the soft and the hard layers. Based on field investigations and with the employment of the distinct element numerical simulation program UDEC (universal distinct element code), the whole kinetic sliding process of Tan iashan landslide was represented and the formation mechanism of the consequent rock landslide under seismic loading was studied. The results are helpful for understanding seismic dynamic responses of consequent bedding rock slopes, where the slope stability could be governed by earthquakes.展开更多
In this paper, the stress-strain bys torests at various temperatures was investigated experimentally for Cu-Zn-Al polycrystalline shape memory alloys (SMAs). Numerical simulations of the pseudoelastic hysteresis were ...In this paper, the stress-strain bys torests at various temperatures was investigated experimentally for Cu-Zn-Al polycrystalline shape memory alloys (SMAs). Numerical simulations of the pseudoelastic hysteresis were performed based on a model, which had been proposed by the authors. As observed in the experiments, the shapes of the outer loops of the hysteresis varied strongly from specimen to specimen, which have the same chemical composition but different heat-treatment. Rather complicated inner hysteretic curves were obtained at testing temperatures higher than Af. The numerical simulations of the stress-strain hysteresis and the inner hysteretic curves agreed quite well with the experimental results.展开更多
Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elasti...Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions.展开更多
Based on an observational analysis, seven numerical experiments are designed to study the impacts of Pacific SSTA on summer precipitation over eastern China and relevant physical mechanism by NCAR CCM3. The numerical ...Based on an observational analysis, seven numerical experiments are designed to study the impacts of Pacific SSTA on summer precipitation over eastern China and relevant physical mechanism by NCAR CCM3. The numerical simulation results show that preceding winter SSTA in the Kuroshio region leads to summer precipitation anomaly over the Yangtze River valleys by modifying atmospheric general circulation over eastern Asia and middle-high latitude. West Pacific subtropical high is notably affected by preceding spring SSTA over the middle and east of Equator Pacific; SSTA of the central region of middle latitude in the corresponding period causes the summer rainfall anomaly over eastern China so as to trigger the atmospheric Eurasia-Pacific teleconnection pattern.展开更多
A large amount of data can partly assure good fitting quality for the trained neural networks.When the quantity of experimental or on-site monitoring data is commonly insufficient and the quality is difficult to contr...A large amount of data can partly assure good fitting quality for the trained neural networks.When the quantity of experimental or on-site monitoring data is commonly insufficient and the quality is difficult to control in engineering practice,numerical simulations can provide a large amount of controlled high quality data.Once the neural networks are trained by such data,they can be used for predicting the properties/responses of the engineering objects instantly,saving the further computing efforts of simulation tools.Correspondingly,a strategy for efficiently transferring the input and output data used and obtained in numerical simulations to neural networks is desirable for engineers and programmers.In this work,we proposed a simple image representation strategy of numerical simulations,where the input and output data are all represented by images.The temporal and spatial information is kept and the data are greatly compressed.In addition,the results are readable for not only computers but also human resources.Some examples are given,indicating the effectiveness of the proposed strategy.展开更多
We successfully perform the three-dimensional tracking in a turbulent fluid flow of small axisymmetrical particles that are neutrally-buoyant and bottom-heavy,i.e.,they have a non-homogeneous mass distribu-tion along ...We successfully perform the three-dimensional tracking in a turbulent fluid flow of small axisymmetrical particles that are neutrally-buoyant and bottom-heavy,i.e.,they have a non-homogeneous mass distribu-tion along their symmetry axis.We experimentally show how a tiny mass inhomogeneity can affect the particle orientation along the preferred vertical direction and modify its tumbling rate.The experiment is complemented by a series of simulations based on realistic Navier-Stokes turbulence and on a point-like particle model that is capable to explore the full range of parameter space characterized by the gravi-tational torque stability number and by the particle aspect ratio.We propose a theoretical perturbative prediction valid in the high bottom-heaviness regime that agrees well with the observed preferential ori-entation and tumbling rate of the particles.We also show that the heavy-tail shape of the probability distribution function of the tumbling rate is weakly affected by the bottom-heaviness of the particles.展开更多
Aiming at the impaction among granules of non obstructive particle damping(NOPD), the vibration absorption model for vertical impact of granules is established by adopting Hertz contact theory. The numerical simulati...Aiming at the impaction among granules of non obstructive particle damping(NOPD), the vibration absorption model for vertical impact of granules is established by adopting Hertz contact theory. The numerical simulation of the granules movement process is proceeded, and the vibration response of a free free uniform beam is obtained for the case when all granules act on it. Through this method, the effect on vibration absorption of impaction is investigated. The simulational data show that multi gra nule vertical impaction is not sensitive to the movement clearance. The vibration absorption is also very well when the clearance changes within a large range. Therefore, the phenomenon that the vibration magnitude may increase if the clearance in a single impact body is improperly selected will not happen. The effect of vibration suppression in the range of middle and high frequencies(2 500~6 000 Hz) is better than that in the range of low frequency(<2 500 Hz). It indicates that the effect on vibration absorption of multi granule can well restrain the vibration of middle and high frequencies.展开更多
We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described ...We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described in detail by the decrease of Gross-Pitaevskii energy. A completely straight vortex and the steady and symmetrical multiple-vortex configurations are obtained. We analyse the effect of initial conditions and angular velocity on the number and shape of vortices.展开更多
Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet ...Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet and the thermal plasma jet on the flow characteristics are addressed. The numerical results show that the dimensionless location of the stagnation layer is significantly affected by the momentum flux ratio, but it is not dependent on the distance.Specifically, the stagnation layer is closer to the plasma torch outlet with the increase of the momentum flux ratio. Furthermore, the flow regimes of the stagnation layer and the flow characteristics of the thermal plasma jet are closely related to the momentum flux ratio. The characteristic frequencies associated with the different regimes are identified. The deflecting oscillation flow regimes are found when the momentum flux ratio is low, which provokes axial velocity fluctuations inside the thermal plasma jet. By contrast, for cases with a high momentum flux ratio, flapping flow regimes are distinguished. The thermal plasma jets are very stable and the axial velocity fluctuations mainly exist in the stagnation layer.展开更多
基金Funded by the National Natural Science Foundation of China Academy of Engineering Physics and Jointly Setup"NSAF"Joint Fund(No.U1430119)。
文摘The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity.
基金financially supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(Grant No.SKLGP2020Z007)。
文摘Deeply buried mountain tunnels are often exposed to the risk of rock bursts,which always cause serious damage to the supporting structures and threaten the safety of the engineers.Due to the limited data available,a suitable approach to predict the rockburst tendency at the preliminary stage becomes very important.In this study,an integrated methodology combining 3D initial stress inversion and rockburst tendency prediction was developed and subsequently applied to a case study of the Sangzhuling Tunnel on the Sichuan–Tibet Railway.The numerical modelling involved inverting the initial stress field using a multiple linear regression method.The tunnel excavation was simulated separately by FDM and DEM,based on a stress boundary condition from the inverted stress field.The comparative analysis demonstrates that the rockburst ratio calculated using DEM(76.70%)exhibits a slight increase compared to FDM(75.38%),and the rockburst location is consistent with the actual situation.This suggests that DEM is more suitable for simulating the stress redistribution during excavation in a jointed rock mass.The numerical simulation combined with the deviatoric stress approach effectively predicts rockburst tendency,meeting the engineering requirements.Despite its limitations,numerical simulation remains a reliable method for predicting rock bursts.
基金supported by the National Natural Science Foundation of China(Grant Nos.52404155 and 52304111)State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing(Grant No.XD2024006).
文摘Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately controlling the blasting energy and achieving the directional fracture of a rock mass have become common problems in the field.A two-dimensional blasting(2D blasting)technique was proposed that utilizes the characteristic that the tensile strength of a rock mass is significantly lower than its compressive strength.After blasting,only a 2D crack surface is generated along the predetermined direction,eliminating the damage to the reserved rock mass caused by conventional blasting.However,the interior of a natural rock mass is a"black box",and the process of crack propagation is difficult to capture,resulting in an unclear 2D blasting mechanism.To this end,a single-hole polymethyl methacrylate(PMMA)test piece was used to conduct a 2D blasting experiment with the help of a high-speed camera to capture the dynamic crack propagation process and the digital image correlation(DIC)method to analyze the evolution law of surface strain on the test piece.On this basis,a three-dimensional(3D)finite element model was established based on the progressive failure theory to simulate the stress,strain,damage,and displacement evolution process of the model under 2D blasting.The simulation results were consistent with the experimental results.The research results reveal the 2D blasting mechanism and provide theoretical support for the application of 2D blasting technology in the field of rock excavation.
基金supported by the National Natural Science Foundation of China(Project Nos.12272270,11972261).
文摘Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure.However,when the outlet speed of the nozzle exceeds 400 m/s,investigating high-speed flash boiling atomization(HFBA)becomes quite challenging.This difficulty arises fromthe involvement ofmany complex physical processes and the requirement for a very fine mesh in numerical simulations.In this study,an HFBA model for gasoline direct injection(GDI)is established.This model incorporates primary and secondary atomization,as well as vaporization and boilingmodels,to describe the development process of the flash boiling spray.Compared to lowspeed FBA,these physical processes significantly impact HFBA.In this model,the Eulerian description is utilized for modeling the gas,and the Lagrangian description is applied to model the droplets,which effectively captures the movement of the droplets and avoids excessive mesh in the Eulerian coordinates.Under various conditions,numerical solutions of the Sauter mean diameter(SMD)for GDI show good agreement with experimental data,validating the proposed model’s performance.Simulations based on this HFBA model investigate the influences of fuel injection temperature and ambient pressure on the atomization process.Numerical analyses of the velocity field,temperature field,vapor mass fraction distribution,particle size distribution,and spray penetration length under different superheat degrees reveal that high injection temperature or low ambient pressure significantly affects the formation of small and dispersed droplet distribution.This effect is conducive to the refinement of spray particles and enhances atomization.
基金National Natural Science Foundation of China(No.11575080)Hunan Provincial Natural Science Foundation of China(No.2022JJ30482)Hunan Provincial Innovation Foundation for Postgraduate(No.QL20220206).
文摘Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods.An abnormal radon exhalation behavior was observed,leading to computational fluid dynamics(CFD)-based simulations in which dynamic radon migration in a porous medium and accumulation chamber was considered.Based on the in-situ experimental and numerical simulation results,variations in the radon exhalation rate subject to permeability,flow rate,and insertion depth were quantified and analyzed.The in-situ radon exhalation rates measured using the flow-through method were higher than those measured using the closed-loop method,which could be explained by the negative pressure difference between the inside and outside of the chamber during the measurements.The consistency of the variations in the radon exhalation rate between the experiments and simulations suggests the reliability of CFD-based techniques in obtaining the dynamic evolution of transient radon exhalation rates for diffusion and convection at the porous medium-air interface.The synergistic effects of the three factors(insertion depth,flow rate,and permeability)on the negative pressure difference and measured exhalation rate were quantified,and multivariate regression models were established,with positive correlations in most cases;the exhalation rate decreased with increasing insertion depth at a permeability of 1×10^(−11) m^(2).CFD-based simulations can provide theoretical guidance for improving the flow-through method and thus achieve accurate measurements.
基金This work was supported by the National Natural Science Foundation of China(No.11575080)the National Natural Science Foundation of Hunan Province,China(No.2022JJ30482)the Hunan Provincial Innovation Foundation for Postgraduates(No.QL20220206).
文摘Accurate measurements of the radon exhalation rate help identify and evaluate radon risk regions in the environment.Among these measurement methods,the closed-loop method is frequently used.However,traditional experiments are insufficient or cannot analyze the radon migration and exhalation patterns at the gas–solid interface in the accumulation chamber.The CFD-based technique was applied to predict the radon concentration distribution in a limited space,allowing radon accumulation and exhalation inside the chamber intuitively and visually.In this study,three radon exhalation rates were defined,and two structural ventilation tubes were designed for the chamber.The consistency of the simulated results with the variation in the radon exhalation rate in a previous experiment or analytical solution was verified.The effects of the vent tube structure and flow rate on the radon uniformity in the chamber;permeability,insertion depth,and flow rate on the radon exhalation rate and the effective diffusion coefficient on back-diffusion were investigated.Based on the results,increasing the inser-tion depth from 1 to 5 cm decreased the effective decay constant by 19.55%,whereas the curve-fitted radon exhalation rate decreased(lower than the initial value)as the deviation from the initial value increased by approximately 7%.Increasing the effective diffusion coefficient from 2.77×10^(-7) to 7.77×10^(-6) m^(2) s^(-1) made the deviation expand from 2.14 to 15.96%.The conclusion is that an increased insertion depth helps reduce leakage in the chamber,subject to notable back-diffusion,and that the closed-loop method is reasonably used for porous media with a low effective diffusion coefficient in view of the back-diffusion effect.The CFD-based simulation is expected to provide guidance for the optimization of the radon exhalation rate measurement method and,thus,the accurate measurement of the radon exhalation rate.
基金supported by State Grid Ningxia Electric Power Co.,Ltd.under Grant 5229CG220006Natural Science Foundation of Ningxia Province under Grant 2022AAC03629.
文摘As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary to conduct flow analysis.In this study,numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ωmodel.The flow patterns in different segments of the lightning rod at the same reference wind speed(wind speed at a height of 10 m)and the flow patterns in the same segment at different reference wind speeds were investigated.The variations of lift coefficient,drag coefficient,and vorticity distribution were obtained.The results showed that vortex shedding phenomena occurred in all segments of the lightning rod,and the strength of vortex shedding increased with decreasing diameter.The vorticity magnitude and the root mean square magnitudes of the lift coefficient and drag coefficient also increased accordingly.The time history curves of the lift coefficient and drag coefficient on the surface of the lightning rod exhibited sinusoidal patterns with a single dominant frequency.For the same segment,as the wind speed increased in a certain range,the root mean square values of the lift coefficient and drag coefficient decreased,while their dominant frequencies increased.Moreover,there was a proportional relationship between the dominant frequencies of the lift coefficient and drag coefficient.The findings of this study can provide valuable insights for the refined design of lightning rods with similar structures.
基金supported by the National Natural Science Foundation of China(No.52271091)Natural Science Foundation Project of Ningxia Province(No.2023AAC03324)the National Key Research and Development Program of China(No.2021YFB3701100).
文摘It is one concern of the researchers how magnesium(Mg)alloys solidify under different conditions and how their microstructure evolves during solidification,and what are the relationship between the macroscopic properties and various microstructures.Such issues are difficult to be revealed through experiments only,especially for the newly developed Mg alloys,for which there is a lack of more systematic and mature system.However,multi-scale modeling and simulation can promote and deepen our understanding of the microstructure and its deformation mechanism.In this paper,we review and summarize the recent research progress of numerical simulation of Mg alloys in forming and microstructure,namely casting,extrusion,rolling,and welding,using crystal plasticity finite element(CPFEM)and molecular dynamics(DM)methods.Besides,the methods and innovations of modeling are also summarized.Lastly,the paper discusses the development prospects and challenges of the numerical simulation in the field of Mg alloys.
文摘A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radiation, and convection. A formula for the calculation of the heat conductivity of a sintering system containing solid phase, liquid phase, and gas phase is given. Due to the continuous movement of the laser beam, a local coordinate system centered on the laser beam is used to simplify the analytical calculation. Assuming that it is approximately a Gaussian laser beam, the heat conduction equation is resolved based on the assumption of the thermal insulating boundary conditions and the fixed thermal physical parameters. The FORTRAN language is employed to compile the program to simulate the temperature field in the direct copper powder sintering process. It shows a good agreement with the preliminary experimental results.[KH3/4D]
文摘The 3 D non isothermal flow of non Newtonian viscous polymer melt in a co rotating twin screw extruder is modeled. The distributions of the velocity, temperature, pressure and the viscous dissipation in the flow domain are presented by using a fluid dynamics analysis package (Polyflow). The numerical results show that the temperatures are high in the intermeshing region and on the screw surface, the maximum pressure and the minimum pressure occur in the intermeshing region, and the flow rate is almost proportional to the screw speed.
文摘In this paper the differences between Meiyu and Baiu front in 1983 have firstly been analysed, the trajectories of air on and to the north side of Meiyu and Baiu fronts during the Meiyu period have then been traced, and the forecasting and simulating of 4 sets of Meiyu onset of the year have finally been run utilizing the global model at UK Me-leorological Office. The results show: 1) Meiyu fronts are different from Baiu ones in temperature, humidity and stratification fields in lower atmosphere; and the possibly reasons for it are explained. 2) The Bay of Bengal is the main moisture source for Meiyu front, the South China Sea and the Pacific, for Baiu ones; and some existed arguments on it are also discussed. 3) The onset of Meiyu and its rainfall and rain belts are sensitive to the Tibetan Plateau, and the water vapour conditions over the Bay of Bengal and the South China Sea, but not sensitive to the SST over the equatorial area or to the East of Japan.
基金Supported by the National Natural Science Foundation of China (40772175,40972175)the Scientific Research Fund of Southwest Jiaotong University(2008-A01)+1 种基金the Doctoral Student Innovation Fund of Southwest Jiaotong Universitythe National Natural Science Foundation of China-Yunan Joint Fund (U1033601)
文摘Tangjiashan landslide is a typical high-speed landslide hosted on consequent bedding rock. The landslide was induced by Wenchuan earthquake at a medium-steep hill slope. The occurrence of Tangjiashan landslide was basically controlled by the tectonic structure, topography, stratum lithology, slope structure, seismic waves, and strike of river. Among various factors, the seismic loading with great intensity and long duration was dominant. The landslide initiation exhibited the local amplification effect of seismic waves at the rear of the slope, the dislocation effect on the fault, and the shear failure differentiating effect on the regions between the soft and the hard layers. Based on field investigations and with the employment of the distinct element numerical simulation program UDEC (universal distinct element code), the whole kinetic sliding process of Tan iashan landslide was represented and the formation mechanism of the consequent rock landslide under seismic loading was studied. The results are helpful for understanding seismic dynamic responses of consequent bedding rock slopes, where the slope stability could be governed by earthquakes.
文摘In this paper, the stress-strain bys torests at various temperatures was investigated experimentally for Cu-Zn-Al polycrystalline shape memory alloys (SMAs). Numerical simulations of the pseudoelastic hysteresis were performed based on a model, which had been proposed by the authors. As observed in the experiments, the shapes of the outer loops of the hysteresis varied strongly from specimen to specimen, which have the same chemical composition but different heat-treatment. Rather complicated inner hysteretic curves were obtained at testing temperatures higher than Af. The numerical simulations of the stress-strain hysteresis and the inner hysteretic curves agreed quite well with the experimental results.
文摘Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions.
基金Natural Science Foundation of China(40331010)Study Project of Jiangsu Key Laboratoryof Meteorological Disaster (KLME050304)
文摘Based on an observational analysis, seven numerical experiments are designed to study the impacts of Pacific SSTA on summer precipitation over eastern China and relevant physical mechanism by NCAR CCM3. The numerical simulation results show that preceding winter SSTA in the Kuroshio region leads to summer precipitation anomaly over the Yangtze River valleys by modifying atmospheric general circulation over eastern Asia and middle-high latitude. West Pacific subtropical high is notably affected by preceding spring SSTA over the middle and east of Equator Pacific; SSTA of the central region of middle latitude in the corresponding period causes the summer rainfall anomaly over eastern China so as to trigger the atmospheric Eurasia-Pacific teleconnection pattern.
基金support from the National Natural Science Foundation of China(NSFC)(52178324).
文摘A large amount of data can partly assure good fitting quality for the trained neural networks.When the quantity of experimental or on-site monitoring data is commonly insufficient and the quality is difficult to control in engineering practice,numerical simulations can provide a large amount of controlled high quality data.Once the neural networks are trained by such data,they can be used for predicting the properties/responses of the engineering objects instantly,saving the further computing efforts of simulation tools.Correspondingly,a strategy for efficiently transferring the input and output data used and obtained in numerical simulations to neural networks is desirable for engineers and programmers.In this work,we proposed a simple image representation strategy of numerical simulations,where the input and output data are all represented by images.The temporal and spatial information is kept and the data are greatly compressed.In addition,the results are readable for not only computers but also human resources.Some examples are given,indicating the effectiveness of the proposed strategy.
基金supported by the National Natural Science Foundation of China (Grant 11988102)
文摘We successfully perform the three-dimensional tracking in a turbulent fluid flow of small axisymmetrical particles that are neutrally-buoyant and bottom-heavy,i.e.,they have a non-homogeneous mass distribu-tion along their symmetry axis.We experimentally show how a tiny mass inhomogeneity can affect the particle orientation along the preferred vertical direction and modify its tumbling rate.The experiment is complemented by a series of simulations based on realistic Navier-Stokes turbulence and on a point-like particle model that is capable to explore the full range of parameter space characterized by the gravi-tational torque stability number and by the particle aspect ratio.We propose a theoretical perturbative prediction valid in the high bottom-heaviness regime that agrees well with the observed preferential ori-entation and tumbling rate of the particles.We also show that the heavy-tail shape of the probability distribution function of the tumbling rate is weakly affected by the bottom-heaviness of the particles.
文摘Aiming at the impaction among granules of non obstructive particle damping(NOPD), the vibration absorption model for vertical impact of granules is established by adopting Hertz contact theory. The numerical simulation of the granules movement process is proceeded, and the vibration response of a free free uniform beam is obtained for the case when all granules act on it. Through this method, the effect on vibration absorption of impaction is investigated. The simulational data show that multi gra nule vertical impaction is not sensitive to the movement clearance. The vibration absorption is also very well when the clearance changes within a large range. Therefore, the phenomenon that the vibration magnitude may increase if the clearance in a single impact body is improperly selected will not happen. The effect of vibration suppression in the range of middle and high frequencies(2 500~6 000 Hz) is better than that in the range of low frequency(<2 500 Hz). It indicates that the effect on vibration absorption of multi granule can well restrain the vibration of middle and high frequencies.
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos 10301034 and 40574069), The authors thank Professor Du Q very much for his important discussions.
文摘We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates, For anisotropic cases, the bending process of vortices is described in detail by the decrease of Gross-Pitaevskii energy. A completely straight vortex and the steady and symmetrical multiple-vortex configurations are obtained. We analyse the effect of initial conditions and angular velocity on the number and shape of vortices.
基金supported by National Natural Science Foundation of China (Nos. 12035015 and 12105282)。
文摘Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet and the thermal plasma jet on the flow characteristics are addressed. The numerical results show that the dimensionless location of the stagnation layer is significantly affected by the momentum flux ratio, but it is not dependent on the distance.Specifically, the stagnation layer is closer to the plasma torch outlet with the increase of the momentum flux ratio. Furthermore, the flow regimes of the stagnation layer and the flow characteristics of the thermal plasma jet are closely related to the momentum flux ratio. The characteristic frequencies associated with the different regimes are identified. The deflecting oscillation flow regimes are found when the momentum flux ratio is low, which provokes axial velocity fluctuations inside the thermal plasma jet. By contrast, for cases with a high momentum flux ratio, flapping flow regimes are distinguished. The thermal plasma jets are very stable and the axial velocity fluctuations mainly exist in the stagnation layer.