Abstract Accurate simulation of seismic wave propaga- tion in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments wi...Abstract Accurate simulation of seismic wave propaga- tion in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic model- ing, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or ref- erence methods, or via direct comparison with real data acquired in situ. Such approaches have limitations,especially if the propagation occurs in a complex envi- ronment with strong-contrast reflectors and surface irreg- ularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experi- ments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.展开更多
基于美国新一代数值预报模式WRF(The Weather Research and Forecasting)及其3DVAR(Three-Dimensional Variational)同化系统,采用3DVAR直接同化雷达反射率资料,对2010年10月8日发生在云南省的暴雨过程进行三维变分同化和数值模拟试验...基于美国新一代数值预报模式WRF(The Weather Research and Forecasting)及其3DVAR(Three-Dimensional Variational)同化系统,采用3DVAR直接同化雷达反射率资料,对2010年10月8日发生在云南省的暴雨过程进行三维变分同化和数值模拟试验。考察了采用不同水平分辨率和垂直层次的雷达反射率进入同化系统对暴雨预报带来的影响。结果表明:同化雷达资料相对无同化任何资料,雨带位置南移,更接近实况降水。同化不同水平分辨率的雷达反射率资料,其中水平分辨率为0. 1度的反射率资料同化后,模拟的降水相对其他方案更接近实况。垂直方向上选取3500m和6000m高度的资料,对整个降水带位置和降水强度影响较大。在此个例中选取垂直层次在1000m,2000m,3000m,3500m,4000m,5000m,7000m,8000m的雷达反射率资料,模式模拟的降水更接近实况。展开更多
基金the INSIS Institute of the French CNRS,Aix-Marseille Universitythe Carnot Star Institute,the VISTA Projectthe Norwegian Research Council through the ROSE Project for financial support
文摘Abstract Accurate simulation of seismic wave propaga- tion in complex geological structures is of particular interest nowadays. However conventional methods may fail to simulate realistic wavefields in environments with great and rapid structural changes, due for instance to the presence of shadow zones, diffractions and/or edge effects. Different methods, developed to improve seismic model- ing, are typically tested on synthetic configurations against analytical solutions for simple canonical problems or ref- erence methods, or via direct comparison with real data acquired in situ. Such approaches have limitations,especially if the propagation occurs in a complex envi- ronment with strong-contrast reflectors and surface irreg- ularities, as it can be difficult to determine the method which gives the best approximation of the "real" solution, or to interpret the results obtained without an a priori knowledge of the geologic environment. An alternative approach for seismics consists in comparing the synthetic data with high-quality data collected in laboratory experi- ments under controlled conditions for a known configuration. In contrast with numerical experiments, laboratory data possess many of the characteristics of field data, as real waves propagate through models with no numerical approximations. We thus present a comparison of laboratory-scaled measurements of 3D zero-offset wave reflection of broadband pulses from a strong topographic environment immersed in a water tank with numerical data simulated by means of a spectral-element method and a discretized Kirchhoff integral method. The results indicate a good quantitative fit in terms of time arrivals and acceptable fit in amplitudes for all datasets.
文摘基于美国新一代数值预报模式WRF(The Weather Research and Forecasting)及其3DVAR(Three-Dimensional Variational)同化系统,采用3DVAR直接同化雷达反射率资料,对2010年10月8日发生在云南省的暴雨过程进行三维变分同化和数值模拟试验。考察了采用不同水平分辨率和垂直层次的雷达反射率进入同化系统对暴雨预报带来的影响。结果表明:同化雷达资料相对无同化任何资料,雨带位置南移,更接近实况降水。同化不同水平分辨率的雷达反射率资料,其中水平分辨率为0. 1度的反射率资料同化后,模拟的降水相对其他方案更接近实况。垂直方向上选取3500m和6000m高度的资料,对整个降水带位置和降水强度影响较大。在此个例中选取垂直层次在1000m,2000m,3000m,3500m,4000m,5000m,7000m,8000m的雷达反射率资料,模式模拟的降水更接近实况。