A 2-D depth averaged RNG k- ε model is developed to simulate the flow in a typical reach of the Upper Yellow River with non-monotonic banks. In order to take account of the effect of the secondary flow in a bend, the...A 2-D depth averaged RNG k- ε model is developed to simulate the flow in a typical reach of the Upper Yellow River with non-monotonic banks. In order to take account of the effect of the secondary flow in a bend, the momentum equations are modified by adding an additional source term. A comparison between the numerical simulation and the field measurements indicates that the improved 2-D depth averaged RNG k- ε model can improve the accuracy of the numerical simulation. An arc spline interpolation method is developed to interpolate the non-monotonic river banks. The method can also be reasonably applied for the 2-D interpolation of the river bed level. Through a comparison of the water surface gradients simulated in the seven bends of the studied reach, some analytical formulae are improved to reasonably calculate the longitudinal and transverse gradients in meandering river reaches. Furthermore, the positions of the maximum water depth and the maximum velocity in a typical bend are discussed.展开更多
Shape-from-shading(SFS) is one of the important approaches of 3-D surface reconstruction in computer vision. Since reflectance map equation in SFS is a nonlinear partial differential equation(PDE) with two unknown var...Shape-from-shading(SFS) is one of the important approaches of 3-D surface reconstruction in computer vision. Since reflectance map equation in SFS is a nonlinear partial differential equation(PDE) with two unknown variables, SFS with one image is ill-posed in mathematical sense. A linear perspective SFS method with two images is proposed to deal with the problem. We assume that two images with different light source directions are captured firstly. Orthogonal projection is not as accurate as perspective one to simulate imaging processes. Two reflectance map equations are established based on the Lambertian model under perspective projection, and the equations are further transformed into one linear PDE. Then the iterative semi-Lagrangian algorithm is used to approximate the solution. Finally, 3-D height values of pixel points in imaging planes are solved by the numerical interpolation method. Experimental results of both hemisphere and complex surfaces show that the proposed method can reconstruct surfaces accurately.展开更多
基金supported by the National Natural Science Foun-dation of China(Grant Nos.91230111,11361002)the Natural Science Foundation of Ningxia Hui Autonomous Region(Grant No.NZ13086)
文摘A 2-D depth averaged RNG k- ε model is developed to simulate the flow in a typical reach of the Upper Yellow River with non-monotonic banks. In order to take account of the effect of the secondary flow in a bend, the momentum equations are modified by adding an additional source term. A comparison between the numerical simulation and the field measurements indicates that the improved 2-D depth averaged RNG k- ε model can improve the accuracy of the numerical simulation. An arc spline interpolation method is developed to interpolate the non-monotonic river banks. The method can also be reasonably applied for the 2-D interpolation of the river bed level. Through a comparison of the water surface gradients simulated in the seven bends of the studied reach, some analytical formulae are improved to reasonably calculate the longitudinal and transverse gradients in meandering river reaches. Furthermore, the positions of the maximum water depth and the maximum velocity in a typical bend are discussed.
基金supported by the National Natural Science Foundation of China(61005015)the Third National Post-Doctoral Special Foundation of China(201003280)
文摘Shape-from-shading(SFS) is one of the important approaches of 3-D surface reconstruction in computer vision. Since reflectance map equation in SFS is a nonlinear partial differential equation(PDE) with two unknown variables, SFS with one image is ill-posed in mathematical sense. A linear perspective SFS method with two images is proposed to deal with the problem. We assume that two images with different light source directions are captured firstly. Orthogonal projection is not as accurate as perspective one to simulate imaging processes. Two reflectance map equations are established based on the Lambertian model under perspective projection, and the equations are further transformed into one linear PDE. Then the iterative semi-Lagrangian algorithm is used to approximate the solution. Finally, 3-D height values of pixel points in imaging planes are solved by the numerical interpolation method. Experimental results of both hemisphere and complex surfaces show that the proposed method can reconstruct surfaces accurately.