期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
NUMERICAL STUDIES FOR GAS SOLID TWO PHASE STEADY MIXED CONVECTION PROBLEMS WITH PHASE CHANGE
1
作者 Chen Yue-nan Yang Xiao-xing Department of Mechanics,Zhejiang University,Hangzhou 310027,P.R China 《Journal of Hydrodynamics》 SCIE EI CSCD 1990年第1期66-73,共8页
A mathematical model for describing gas solid two phase steady mixed convection with phase change has been developed and numerical calculation methods presented.A melting liquid droplet failing a counter gas currenl e... A mathematical model for describing gas solid two phase steady mixed convection with phase change has been developed and numerical calculation methods presented.A melting liquid droplet failing a counter gas currenl expe- riences three processes,cooling of liquid droplet,solidification and cooling of the solid particle.The turbulent model used for Rayleigh number greater than 10~6 is a two equation(k—ε)model of turbulence.For phase change,an improved enthalpy method with varied time step is proposed.The gas particle two phase flow is described by using Eulerian-Lagrangian approach.Modified SIMPLE algorithm and Runge-Kutta method are used in interative calcu- lation.As an example of calculation,the flow in a special 2-dimensional axi-symmetrical prilling tower of diameter 20 m and height 50 m has been performed.Buoyancy effect is important for moving droplet with phase change. The model to be developed and analysis of results obtained in this paper are useful for engineering design in indus- try. 展开更多
关键词 PR numerical studies FOR GAS SOLID TWO PHASE STEADY MIXED CONVECTION PROBLEMS WITH PHASE CHANGE GAS
原文传递
Numerical studies of stepwise radial fuel shuffling in a traveling wave reactor
2
作者 ZHANG DaLin ZHENG MeiYin +4 位作者 AN HongZhen CHEN XueNong TIAN WenXi QIU SuiZheng SU GuangHui 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第6期1229-1237,共9页
The concept of travelling wave reactor(TWR)applies the mechanism of self-sustaining and propagating nuclear fission travelling waves in fertile media of 238U and 232Th to achieve very high fuel utilization.Based on th... The concept of travelling wave reactor(TWR)applies the mechanism of self-sustaining and propagating nuclear fission travelling waves in fertile media of 238U and 232Th to achieve very high fuel utilization.Based on this concept,a stepwise radial fuel shuffling strategy was proposed and applied to a sodium-cooled fast reactor(SFR)loading metallic 238U fuel.The multi-group deterministic neutronic code ERANOS with JEFF3.1 data library was used as a basic tool to perform the neutronics and burnup calculations.The inward fuel shuffling calculations were first performed in a 1-D cylindrical case for parametric understanding,and then extended to a 2-D R-Z case.The shuffling calculations for the 1-D and 2-D SFR model yielded some interesting results.The asymptotic keff varied parabolically with the characteristic fluence,while the burnup increased linearly.The highest burnup achieved in 2-D case was 38%.The power peak shifted from the fuel outlet side(core centre)to the fuel inlet side(core periphery)in both 1-D and 2-D cases and the corresponding peaking factor decreased dramatically along with the characteristic fluence.The present research demonstrated that the proposed stepwise radial fuel shuffling in the sodium fast reactor achieved the characteristics of the traveling wave reactor. 展开更多
关键词 stepwise radial fuel shuffling traveling wave reactor asymptotic state numerical study
原文传递
A Novel Multi-Step Numerical Framework for Ice Accretion Prediction Based on Unsteady Water Film Dynamics
3
作者 Ke Shen Dan Zeng +2 位作者 Changhao Wang Lei Wang Yuliang Dong 《Frontiers in Heat and Mass Transfer》 2025年第6期1957-1980,共24页
Ice accretion on aircraft poses a critical threat to flight safety by significantly altering aerodynamic performance.This study presents a novel numerical framework for ice accretion prediction,developed by extending ... Ice accretion on aircraft poses a critical threat to flight safety by significantly altering aerodynamic performance.This study presents a novel numerical framework for ice accretion prediction,developed by extending the Myers model and incorporating an advanced multi-step approach.The proposed framework integrates ice layer growth into the modeling of unsteady water film dynamics and introduces a revised criterion for determining the icing condi-tion.A multi-step scheme,accounting for the continuous variation of physical parameters,is implemented to enhance computational accuracy.The framework is validated through simulations on both 2D and 3D configurations.For the NACA0012 airfoil,the model demonstrates strong adaptability to both rime and glaze ice scenarios,with simulated ice shapes and thicknesses showing close agreement with experimental data,especially under low-temperature rime ice scenarios.In glaze ice cases,the framework effectively captures the leading-edge ice thickness and horn formation,albeit with minor positional deviations.For the GLC-305 swept wing,the approach accurately reproduces the primary ice shape features and overall thickness distribution.However,discrepancies in icing extent and thickness persist under rime scenarios due to the limitations of the single-step strategy.In glaze ice scenarios,the model captures the general trend of ice horn development,though positional and thickness deviations remain.Overall,the developed framework improves the precision of ice accretion simulations and offers a promising tool for advancing aircraft safety.Future research will aim to refine the multi-step framework to further improve its robustness and accuracy in complex,3D icing environments. 展开更多
关键词 Ice accretion numerical study Myers model MULTI-STEP water film dynamics
在线阅读 下载PDF
Numerical study of forward smoldering combustionof polyurethane foam 被引量:1
4
作者 贾宝山 解茂昭 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期278-284,共7页
A two-dimensional and two-phase numerical model is presented for the smolder propagation in a horizontal polyurethane foam. The chemical processes considered include endothermic pyrolysis and exotherrnic oxidation deg... A two-dimensional and two-phase numerical model is presented for the smolder propagation in a horizontal polyurethane foam. The chemical processes considered include endothermic pyrolysis and exotherrnic oxidation degradation of polyurethane foam and exothermic oxidation of char. The governing equations are discretized in space using the finite element method and solved by the software package FEMLAB. Predicted profiles of solid temperature as well as evolutions of solid compositions (including foam, char and ash) are presented at an airflow velocity of 0. 28 cm/s. The computed average smoldering velocity is 0. 021 4 cm/s, and the average maximum temperature is 644. 67 K. Based on the evolutions of solid compositions, the packed bed can be obviously divided into four zones: unreacted zone, fuel pyrolysis and oxidation zone, char oxidation zone and fuel burned-out zone. Simultaneously, the effects of inlet air velocity and fuel properties (including thermal conductivity, specific heat, density and pore diameter) are studied on the smoldering propagation. The results show that the smoldering velocity and temperature have a roughly linear increase with increasing inlet air velocity; the fuel density is the most important factor in determining smoldering propagation; radiation has a non-negligible role on the smoldering velocity for larger pore diameters of porous material. The computational results are compared with the experimental data and a general agreement is reached. 展开更多
关键词 polyurethane foam forward smoldering porous medium smoldering velocity numerical study
在线阅读 下载PDF
Violent Transient Sloshing-Wave Interaction with a Baffle in a Three-Dimensional Numerical Tank 被引量:7
5
作者 XUE Mi-An ZHENG Jinhai +1 位作者 LIN Pengzhi XIAO Zhong 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第4期661-673,共13页
A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual ... A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation. 展开更多
关键词 transient sloshing wave vertical baffle excitation frequency experimental and numerical study
在线阅读 下载PDF
Tapered Suction Caissons:A Numerical Investigation into Their Pull-out Performance 被引量:5
6
作者 M.Zeinoddini J.Keyvani M.Nabipour 《China Ocean Engineering》 SCIE EI 2009年第4期695-707,共13页
Suction caissons have been widely used as anchors and foundations for floating and fixed offshore platforms. The pull-out performance of conventional suction caissons (with upright walls) has been investigated by a ... Suction caissons have been widely used as anchors and foundations for floating and fixed offshore platforms. The pull-out performance of conventional suction caissons (with upright walls) has been investigated by a number of researchers. However, no attention has been paid to tapered suction caissons. This paper deals with the performance of tapered suction caissons under vertical pull-out loads. A numerical approach is used for this purpose. The numerical model is first verified against test data available for common upright caissons. The verified model is then used to study the pullout performance of tapered suction caissons. It is noticed that the pull-out capacities exhibited by tapered suction caissons are in general considerably higher than those from their corresponding traditional upright caissons. To obtain an insight into this superior behaviour, effects from certain soil/caisson/drainage parameters on the pull-out capacity of tapered suction caissons are studied. Soil cohesion is noticed to have a linear improving effect on the capacity of both upright and ta- pered suction caissons. The soil internal friction angle is noticed to have an exponential increasing effect on the pull-out capacity. With a constant caisson diameter, an increase in the aspect ratio is seen to particularly influence the pull-out capacity. With a constant caisson length, an increase in the aspect ratio is discovered to result in non-linear decrease in the pull-out capacity. Under undrained conditions, tapered models generally show less sensitivity to above mentioned soil/caisson parameters as compared with those under drained conditions. 展开更多
关键词 suction caisson pull-out capacity numerical study upright caisson tapered caisson offshore structure sand clay drained UNDRAINED
在线阅读 下载PDF
Three-dimensional numerical study of supercritical pressure effect on heat transfer of cryogenic methane 被引量:6
7
作者 RUAN Bo MENG Hua 《航空动力学报》 EI CAS CSCD 北大核心 2011年第7期1480-1487,共8页
A three-dimensional numerical study of the turbulent convective heat transfer of the cryogenic methane flowing inside a square engine cooling channel under supercritical pressures was systematically conducted.Numerica... A three-dimensional numerical study of the turbulent convective heat transfer of the cryogenic methane flowing inside a square engine cooling channel under supercritical pressures was systematically conducted.Numerical results indicate that increasing the fluid pressure results in enhanced heat transfer of the cryogenic methane under supercritical pressures.At the pseudo-critical temperature under a corresponding supercritical pressure,drastic property variations cause heat transfer deterioration and sharp wall temperature increase at a high wall heat flux of 7MW/m2.A modified Jackson and Hall heat transfer equation,which can be used for supercritical heat transfer calculations of the cryogenic methane,has been successfully established in this paper. 展开更多
关键词 supercritical heat transfer supercritical pressure regenerative cooling cryogenic methane numerical study
原文传递
A numerical study on the impact of tidal waves on the storm surge in the north of Liaodong Bay 被引量:5
8
作者 KONG Xiangpeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第1期35-41,共7页
A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined... A storm surge is an abnormal sharp rise or fall in the seawater level produced by the strong wind and low pressure field of an approaching storm system.A storm tide is a water level rise or fall caused by the combined effect of the storm surge and an astronomical tide.The storm surge depends on many factors,such as the tracks of typhoon movement,the intensity of typhoon,the topography of sea area,the amplitude of tidal wave,the period during which the storm surge couples with the tidal wave.When coupling with different parts of a tidal wave,the storm surges caused by a typhoon vary widely.The variation of the storm surges is studied.An once-in-a-century storm surge was caused by Typhoon 7203 at Huludao Port in the north of the Liaodong Bay from July 26th to 27th,1972.The maximum storm surge is about 1.90 m.The wind field and pressure field used in numerical simulations in the research were derived from the historical data of the Typhoon 7203 from July 23rd to 28th,1972.DHI Mike21 is used as the software tools.The whole Bohai Sea is defined as the computational domain.The numerical simulation models are forced with sea levels at water boundaries,that is the tide along the Bohai Straits from July 18th to 29th(2012).The tide wave and the storm tides caused by the wind field and pressure field mentioned above are calculated in the numerical simulations.The coupling processes of storm surges and tidal waves are simulated in the following way.The first simulation start date and time are 00:00 July 18th,2012; the second simulation start date and time are 03:00 July 18th,2012.There is a three-hour lag between the start date and time of the simulation and that of the former one,the last simulation start date and time are 00:00 July 25th,2012.All the simulations have a same duration of 5 days,which is same as the time length of typhoon data.With the first day and the second day simulation output,which is affected by the initial field,being ignored,only the 3rd to 5th day simulation results are used to study the rules of the storm surges in the north of the Liaodong Bay.In total,57 cases are calculated and analyzed,including the coupling effects between the storm surge and a tidal wave during different tidal durations and on different tidal levels.Based on the results of the 57 numerical examples,the following conclusions are obtained:For the same location,the maximum storm surges are determined by the primary vibration(the storm tide keeps rising quickly) duration and tidal duration.If the primary vibration duration is a part of the flood tidal duration,the maximum storm surge is lower(1.01,1.05 and 1.37 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).If the primary vibration duration is a part of the ebb tidal duration,the maximum storm surge is higher(1.92,2.05 and 2.80 m at the Huludao Port,the Daling Estuary and the Liaohe Estuary respectively).In the mean time,the sea level restrains the growth of storm surges.The hour of the highest storm tide has a margin of error of plus or minus 80 min,comparing the high water hour of the astronomical tide,in the north of the Liaodong Bay. 展开更多
关键词 Liaodong Bay tidal wave storm surges numerical study TYPHOON
在线阅读 下载PDF
Numerical study of effect of front cavity on hydrogen/air premixed combustion in a micro-combustion chamber 被引量:5
9
作者 CHEN Hai LIU Wei-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2259-2271,共13页
The micro-combustion chamber is the key component for micro-TPV systems. To improve the combustor wall temperature level and its uniformity and efficiency, an improved flat micro-combustor with a front cavity is built... The micro-combustion chamber is the key component for micro-TPV systems. To improve the combustor wall temperature level and its uniformity and efficiency, an improved flat micro-combustor with a front cavity is built, and the combustion performance of the original and improved combustors of premixed H2/air flames under various inlet velocities and equivalence ratios is numerically investigated. The effects of the front cavity height and length on the outer wall temperature and efficiency are also discussed. The front cavity significantly improves the average outer wall temperature, outer wall temperature uniformity, and combustion efficiency of the micro-combustor, increases the area of the high temperature zone, and enhances the heat transfer between the burned blends and inner walls. The micro-combustor with the front cavity length of 2.0 mm and height of 0.5 mm is suitable for micro-TPV system application due to the relatively high outer wall temperature, combustion efficiency, and the most uniform outer wall temperature. 展开更多
关键词 MICRO-COMBUSTOR HYDROGEN front cavity numerical study energy conversion efficiency
在线阅读 下载PDF
A Numerical Study of the Urban Intensity Effect on Fog Evolution in the Beijing-Tianjin-Hebei Region 被引量:5
10
作者 LIANG Zhao-Ming GAO Shou-Ting SUN Ji-Song 《Atmospheric and Oceanic Science Letters》 2012年第3期240-245,共6页
The influence of urban intensity on fog evolution in the Beijing-Tianjin-Hebei (BTH) region (China) is investigated numerically with the the Weather Research and Forecasting (WRF) model coupled with the urban canopy p... The influence of urban intensity on fog evolution in the Beijing-Tianjin-Hebei (BTH) region (China) is investigated numerically with the the Weather Research and Forecasting (WRF) model coupled with the urban canopy parameterization-building energy model (UCP- BEM) urban physics scheme. The experiments were designed with a focus on the influence of different urban intensities, which are represented by a different fractional coverage of natural land, buildings, and energy consumption inside buildings in an urban environment. The results of this study indicate that urban areas notably influence fog evolution when natural land is reduced to a small fraction (e.g., less than 10%). Developed land changes fog evolution through urban effects. Higher urban intensity (HUI) generally results in warmer temperatures and lower wind speeds throughout the day, while inhibiting morning specific humidity loss and afternoon specific humidity gain because of the HUI effect on surface heat flux, surface roughness, and surface moisture flux. HUI leads to later and weaker liquid water content formation, with a higher liquid water content base, primarily due to its effect on near surface temperatures. This finding implies that HUI may inhibit the conditions for fog formation. In addition, urban areas with equal natural and developed land coverage seem to greatly enhance the upward surface moisture flux, which is attributed to the combination of a relatively large potential evaporation on developed land and an ample moisture supply from natural land. As a result, the specific humidity increases in the afternoon. 展开更多
关键词 numerical study urban intensity effect FOG the Beijing-Tianjin-Hebei region
在线阅读 下载PDF
Study on Numerical Simulation of Mold Filling and Heat Transfer in Die Casting Process 被引量:17
11
作者 Liangrong JIA, Shoumei XIONG and Baicheng LIU (Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期269-272,共4页
A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow... A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice. 展开更多
关键词 Study on numerical Simulation of Mold Filling and Heat Transfer in Die Casting Process MOLD SIMULATION
在线阅读 下载PDF
Numerical simulation on the mechanism of the normal impact of two droplets onto a thin film 被引量:4
12
作者 郭加宏 戴世强 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期210-212,共3页
The normal impingement process of two water droplets upon a thin film on the solid surface was numerically investigated. The numerical treatment was based on the finite volume solution of the Navier-Stokes (N-S) equ... The normal impingement process of two water droplets upon a thin film on the solid surface was numerically investigated. The numerical treatment was based on the finite volume solution of the Navier-Stokes (N-S) equations combined with the volume of fluid method (VOF). Physically reasonable results for the process of two droplets impacting on the thin film were obtained. The effects of the droplet velocity, the fihn thickness and the spacing between the two droplets on the splash and spread process of the impact were examined. 展开更多
关键词 numerical study droplet impact thin film.
在线阅读 下载PDF
Numerical investigation of transcritical liquid film cooling in a methane/oxygen rocket engine 被引量:2
13
作者 YANG Wei SUN Bing 《航空动力学报》 EI CAS CSCD 北大核心 2011年第4期903-916,共14页
Transcritical film cooling was investigated by numerical study in a methane cooled methane/oxygen rocket engine.The respective time-averaged Navier-Stokes equations have been solved for the compressible steady three-d... Transcritical film cooling was investigated by numerical study in a methane cooled methane/oxygen rocket engine.The respective time-averaged Navier-Stokes equations have been solved for the compressible steady three-dimensional(3-D) flow.The flow field computations were performed using the semi-implicit method for pressure linked equation(SIMPLE) algorithm on several blocks of nonuniform collocated grid.The calculation was conducted over a pressure range of 202 650.0 Pa to 1.2×107 Pa and a temperature range of 120.0 K to 3 568.0 K.Twenty-nine different cases were simulated to calculate the impact of different factors.The results show that mass flow rate,length,diameter,number and diffused or convergence of film jet channel,injection angle and jet array arrangements have great impact on transcritical film cooling effectiveness.Furthermore,shape of the jet holes and jet and crossflow turbulence also affect the wall temperature distribution.Two rows of film arranged in different axial angles and staggered arrangement were proposed as new liquid film arrangement.Different radial angles have impact on the film cooling effectiveness in two row-jets cooled cases.The case of in-line and staggered arrangement are almost the same in the region before the second row of jets,but a staggered arrangement has a higher film cooling effectiveness from the second row of jets. 展开更多
关键词 liquid film cooling numerical study ROCKET TRANSCRITICAL semi-implicit method for pressure linked equation(SIMPLE) film cooling effectiveness
原文传递
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study 被引量:2
14
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
在线阅读 下载PDF
Numerical Study on the Energy Extraction Performance of Coupled Tandem Flapping Hydrofoils 被引量:2
15
作者 QU Heng-liang LIU Zhen 《China Ocean Engineering》 SCIE EI CSCD 2022年第1期38-49,共12页
Tidal current energy is a promising renewable energy source for future electricity supply.The flapping hydrofoil is regarded as a useful tool to extract the tidal current energy in shallow water.A concept of coupled t... Tidal current energy is a promising renewable energy source for future electricity supply.The flapping hydrofoil is regarded as a useful tool to extract the tidal current energy in shallow water.A concept of coupled tandem flapping hydrofoils under semi-activated mode was proposed in the present study.A two-dimensional numerical model,based on the computational fluid dynamics software ANSYS-Fluent,was established to investigate the power extraction performance of the coupled tandem flapping hydrofoils.The effects of the reduced frequency,pitching amplitude,moment of inertia,damping coefficient,and longitudinal distance between hydrofoils were studied.The vortices,pressure distribution,and kinetic characteristics of hydrofoils under various conditions were analyzed to reveal the interaction between the shedding vortex and hydrofoils.The energy extraction mechanism and hydrodynamic performance were analyzed.The positive interactions for energy harvesting were identified for improvements of the further performance.The peak values of efficiency and power coefficient were achieved at 0.69 and 2.13,respectively. 展开更多
关键词 energy extraction numerical study semi-activated coupled tandem hydrofoils
在线阅读 下载PDF
Numerical study on three-dimensional flow field of continuously rotating detonation in a toroidal chamber 被引量:4
16
作者 Xu-Dong Zhang Bao-Chun Fan +2 位作者 Ming-Yue Gui Zhen-Hua Pan Gang Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期66-72,共7页
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ... Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems. 展开更多
关键词 Continuously rotating detonation - Three- dimensional flow field structure - numerical study Detonation parameters deficit ~ Effects of wall geometries
在线阅读 下载PDF
Numerical Study of A Round Buoyant Jet Under the Effect of JONSWAP Random Waves 被引量:2
17
作者 陈永平 李志伟 +1 位作者 张长宽 徐振山 《China Ocean Engineering》 SCIE EI 2012年第2期235-250,共16页
This paper presents a numerical study on the hydrodynamic behaviours of a round buoyant jet under the effect of JONSWAP random waves. A three-dimensional large eddy simulation (LES) model is developed to simulate th... This paper presents a numerical study on the hydrodynamic behaviours of a round buoyant jet under the effect of JONSWAP random waves. A three-dimensional large eddy simulation (LES) model is developed to simulate the buoyant jet in a stagnant ambient and JONSWAP random waves. By comparison of velocity and concentration fields, it is found that the buoyant jet exhibits faster decay of centerline velocity, wider lateral spreading and larger initial dilution under the wave effect, indicating that wave dynamics improves the jet entrainment and mixing in the near field, and subsequently mitigate the jet impacts in the far field. The effect of buoyancy force on the jet behaviours in the random waves is also numerically investigated. The results show that the wave effect on the jet entrainment and mixing is considerably weakened under the existence of buoyancy force, resulting in a slower decay rate of centerline velocity and a narrower jet width for the jet with initial buoyancy. 展开更多
关键词 numerical study large eddy simulation buoyant jet JONSWAP random waves
在线阅读 下载PDF
A Numerical Study on the Effect of an Extratropical Cyclone on the Evolution of a Midlatitude Front 被引量:2
18
作者 陈光华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第5期1433-1448,共16页
The extratropical transition (ET) of tropical cyclone (TC) Haima (2004) was simulated to understand the impact of TC on midlatitude frontal systems. Two experiments were conducted using the Advanced Research ver... The extratropical transition (ET) of tropical cyclone (TC) Haima (2004) was simulated to understand the impact of TC on midlatitude frontal systems. Two experiments were conducted using the Advanced Research version of the Weather Research and Forecast (WRF) model. In the control run (CTL), a vortex was extracted from the 24-hour pre-run output and then inserted into the National Centers for Environmental Prediction (NCEP) global final (FNL) analysis as an initial condition, while TC circulation was removed from the initial conditions in the sensitivity run (NOTC). Comparisons of the experiments demonstrate that the midlatitude front has a wider meridional extent in the NOTC run than that in the CTL run. Furthermore, the CTL run produces convection suppression to the southern side of the front due to strong cold advection related to the TC circulation. The easterly flow north of the TC not only decelerates the eastward displacement of the front and contracts its zonal scale but also transports more moisture westward and lifts the air along equivalent potential temperature surfaces ahead of the front. As a result, the ascending motion and diabatic heating are enhanced in the northeastern edge of the front, and the anticyclonic outflow in the upper-level is intensified. The increased pressure gradient and divergent ftow aloft strengthen the upper-level jet and distort the trough axis in a northwest-southeast orientation. The thermal contrast between the two systems and the dynamic contribution related to the TC circulation can facilitate scalar and rotational frontogenesis to modulate the frontal structure. 展开更多
关键词 numerical study extratropical cyclone midlatitude front
在线阅读 下载PDF
Numerical study on cavity ignition process in a supersonic combustor 被引量:1
19
作者 Yong-chao SUN Zun CAI +3 位作者 Tai-yu WANG Ming-bo SUN Cheng GONG Yu-hui HUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第10期848-858,共11页
Large eddy simulations(LESs)of cavity ignition processes were performed in a 2 D ethylene-fueled supersonic combustor with a single rear-wall-expansion cavity based on OpenFOAM.The ethylene combustion was modelled usi... Large eddy simulations(LESs)of cavity ignition processes were performed in a 2 D ethylene-fueled supersonic combustor with a single rear-wall-expansion cavity based on OpenFOAM.The ethylene combustion was modelled using a 35-step with 20-specie ethylene chemical mechanism,which had been validated by CHEMKIN calculations.The effect on the ignition process of different ignition sites inside the cavity was then studied.It was found that the rear region of the cavity floor is an optimized ignition site where successful ignitions will be achieved.According to different ignition behaviors,two flame extinguishing modes could be identified:blown-off extinguishing mode and flow dissipation extinguishing mode.Blown-off extinguishing mode mainly occurred after ignition near the cavity shear layer,in which the initial flame was blown off directly due to the high speed of the supersonic core flow.Flow dissipation extinguishing mode is likely to occur after ignition near the front and middle cavity floor as a result of severe turbulent dissipations and limited chemical reactions.The study indicates that the movement routine of the initial flame is important for the ignition process,including both moving towards a favorable flow field and forming a large heat release region along the movement. 展开更多
关键词 Ignition process CAVITY Supersonic combustor numerical study
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部