Background and aims:Cessation of nucleoside/nucleotide analogue(Nuc)therapy in patients with HBeAg-negative chronic hepatitis B(CHB)remains controversial.Methods:In this prospective,single-center cohort study,we recru...Background and aims:Cessation of nucleoside/nucleotide analogue(Nuc)therapy in patients with HBeAg-negative chronic hepatitis B(CHB)remains controversial.Methods:In this prospective,single-center cohort study,we recruited 45 patients with HBeAg-negative CHB from The Fifth Medical Center of Chinese People's Liberation Army General Hospital in China's Mainland.Patients were classified into a Nuc cessation group(n?27)and Nuc continuation group(n?18)and followed-up for 36 months.Nuc were stopped after being inactive for at least 4 years(normal alanine aminotransferase(ALT),undetectable hepatitis B virus(HBV)DNA),with liver fibrosisStage1(S1)and inflammationGrade(G1).Results:Within 3 years of follow-up,51.9%patients with Nuc cessation had virological relapse and 14.8%had ALT elevation,while all patients with Nuc continuation had undetectable HBV DNA and normal ALT.The rate of HBsAg loss after Nuc cessation was 22.2%compared with no seroconversion in patients with Nuc continuation.The hepatitis flare rate was 11.1%and there were no cases of hepatic decompensation after Nuc cessation.End of treatment(EOT)HBsAg,HBV RNA,and decline in HBV core-related antigen(HBcrAg)rate were predictive markers for HBsAg seroconversion at 6 months post-Nuc cessation.Conclusion:This study showed favorable HBsAg loss and low hepatitis flare rates after Nuc cessation.EOT HBsAg,HBV RNA,and decline in HBcrAg rate were predictive markers for HBsAg seroconversion at 6 months post-Nuc cessation.展开更多
BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis th...BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.展开更多
The physiology of the central and enteric nervous systems and gastric muscle contributes to the complexities encountered in the research and clinical management of gastroparesis. A wide range of prescription drugs tar...The physiology of the central and enteric nervous systems and gastric muscle contributes to the complexities encountered in the research and clinical management of gastroparesis. A wide range of prescription drugs target the underlying neurotransmitter imbalances and adjust nucleotide levels in appropriate tissues, but treatment is unsatisfactory, as our understanding of the condition is far from complete. In this study, computational software is used to focus on the adenine nucleotide, ATP, as a comparative template for the structures of drugs used in gastroparesis treatment. The results demonstrate that muscarinic, dopamine, serotonin (5-HT) and histamine receptor ligand classes relate structurally and differentially to the molecular structure of ATP. In these neurotransmitter classes, compounds do not target cell membrane receptor G-protein signal transduction in a manner that provides a single mechanism for improving gastroparesis symptoms. The exploration of alternative nucleotide-based deficiencies of KATP channels, Na+/K+ATPases and guanine nucleotide directed nitrergic mechanisms should enhance our experimental approach to understanding this condition.展开更多
BACKGROUND There are conflicting results on the potential correlation between folic acid and gestational diabetes mellitus(GDM),and the correlation between genetic factors related to folic acid metabolism pathways and...BACKGROUND There are conflicting results on the potential correlation between folic acid and gestational diabetes mellitus(GDM),and the correlation between genetic factors related to folic acid metabolism pathways and GDM remains to be revealed.AIM To examine the association between single-nucleotide polymorphisms(SNPs)of enzyme genes in the folate metabolite pathway as well as that between GDM-related genes and risk for GDM.METHODS A nested case-control study was conducted with GDM cases(n=412)and healthy controls(n=412).DNA was extracted blood samples and SNPs were genotyped using Agena Bioscience’s MassARRAY gene mass spectrometry system.The associations between different SNPs of genes and the risk for GDM were estimated using logistic regression models.The generalized multi-factor dimensionality reduction(GMDR)method was used to analyze gene-gene and gene-environment interactions using the GMDR 0.9 software.RESULTS The variation allele frequency of melatonin receptor 1B(MTNR1B)rs10830963 was higher in the GDM group than in controls(P<0.05).MTNR1B rs10830963 mutant G was associated with risk for GDM[adjusted odds ratio(aOR):1.43;95%confidence interval(95%CI):1.13-1.80]in the additive model.MTNR1B rs10830963 GG+GC was significantly associated with the risk for GDM(aOR:1.65;95%CI:1.23-2.22)in the dominant model.The two-locus model of MTNR1B rs10830963 and CHEMERIN rs4721 was the best model(P<0.05)for gene-gene interactions in the GMDR results.The high-risk rs10830963×rs4721 type of interaction was a risk factor for GDM(aOR:2.09;95%CI:1.49-2.93).CONCLUSION This study does not find an association between SNPs of folate metabolic enzymes and risk for GDM.The G mutant allele of MTNR1B rs10830963 is identified as a risk factor for GDM in the additive model,and there may be gene-gene interactions between MTNR1B rs10830963 and CHEMERIN rs4721.It is conducive to studying the causes of GDM and provides a new perspective for the precise prevention of this disease.展开更多
Amoenucles A-F(1-6),six previously undescribed nucleoside derivatives,and two known analogs(7 and 8)were isolated from the culture of Aspergillus amoenus TJ507.Their structures were elucidated through spectroscopic an...Amoenucles A-F(1-6),six previously undescribed nucleoside derivatives,and two known analogs(7 and 8)were isolated from the culture of Aspergillus amoenus TJ507.Their structures were elucidated through spectroscopic analysis,single-crystal X-ray crystallography,and chemical reactions.Notably,3 and 4 represent the first reported instances of nucleosides with an attached pyrrole moiety.Of particular significance,the absolute configuration of the sugar moiety of 1-4 was determined using nuclear magnetic resonance(NMR),electric circular dichroism(ECD)calculations,and a hydrolysis reaction,presenting a potentially valuable method for confirming nucleoside structures.Furthermore,1,2,and 5-8 exhibited potential tumor necrosis factorα(TNF-α)inhibitory activities,which may provide a novel chemical template for the development of agents targeting autoimmune and inflammatory diseases.展开更多
Understanding the genetic diversity–area relationship(GAR)is essential for comprehending how species adapt to environmental changes,as genetic diversity is an indicator of a species’adaptive potential.Variation in e...Understanding the genetic diversity–area relationship(GAR)is essential for comprehending how species adapt to environmental changes,as genetic diversity is an indicator of a species’adaptive potential.Variation in environmental adaptation capacity exists among species and animal taxa with different distribution areas,highlighting the importance of understanding the GAR.To obtain a more comprehensive understanding of the GAR in terrestrial vertebrates,we assessed both haplotype diversity–area and nucleotide diversity–area relationships using 25,453 cytochrome c oxidase subunit I(COI)sequences from 142 amphibian species,574 bird species,and 342 mammal species.We found that both measures of genetic diversity increased with species range size across major animal groups.Nevertheless,the GAR did not differ among animal groups,while haplotype diversity performed better than nucleotide diversity in profiling the GAR,as indicated by higher R2 values.The difference in the modeling fit may stem from the distinct biological and mathematical significance of nucleotide diversity and haplotype diversity.These results suggest that the GAR follows similar rules among different animal taxa.Furthermore,haplotype diversity may serve as a more reliable indicator for assessing the potential effects of area size changes on animal populations and provide better guidance for conserving genetic diversity.展开更多
Genome rearrangement is an important process that leads to genetic diversity,including mutation-related insertions,deletions,or inversions in the genome[1,2].
BACKGROUND Thiopurine-induced leukopenia(TIL)is a life-threatening toxicity and occurs with a high frequency in the Asian population.Although nucleoside diphosphate-linked moiety X-type motif 15(NUDT15)variants signif...BACKGROUND Thiopurine-induced leukopenia(TIL)is a life-threatening toxicity and occurs with a high frequency in the Asian population.Although nucleoside diphosphate-linked moiety X-type motif 15(NUDT15)variants significantly improve the predictive sensitivity of TIL,more than 50%of cases of this toxicity cannot be predicted by this mutation.The potential use of the 6-thioguanine nucleotide(6TGN)level to predict TIL has been explored,but no decisive conclusion has been reached.Can we increase the predictive sensitivity based on 6TGN by subgrouping patients according to their NUDT15 R139C genotypes?AIM To determine the 6TGN cut-off levels after dividing patients into subgroups according to their NUDT15 R139C genotypes.METHODS Patients’clinical and epidemiological characteristics were collected from medical records from July 2014 to February 2017.NUDT15 R139C,thiopurine S methyltransferase,and 6TGN concentrations were measured.RESULTS A total of 411 Crohn’s disease patients were included.TIL was observed in 72 individuals with a median 6TGN level of 323.4 pmol/8×10^8 red blood cells(RBC),which was not different from that of patients without TIL(P=0.071).Then,we compared the 6TGN levels based on NUDT15 R139C.For CC(n=342)and CT(n=65)genotypes,the median 6TGN level in patients with TIL was significantly higher than that in patients without(474.8 vs 306.0 pmol/8×10^8 RBC,P=9.4×10-^5;291.7 vs 217.6 pmol/8×10^8 RBC,P=0.039,respectively).The four TT carriers developed TIL,with a median 6TGN concentration of 135.8 pmol/8×10^8 RBC.The 6TGN cut-off levels were 411.5 and 319.2 pmol/8×108 RBC for the CC and CT groups,respectively.CONCLUSION The predictive sensitivity of TIL based on 6TGN is dramatically increased after subgrouping according to NUDT15 R139C genotypes.Applying 6TGN cut-off levels to adjust thiopurine therapies based on NUDT15 is strongly recommended.展开更多
Aim To synthesize isonucleoside-incorporated oligonucleotides and investigatetheir binding abilities with complementary sequences. Methods The synthesis was performed on DNAsynthesizer, and the binding behavior was in...Aim To synthesize isonucleoside-incorporated oligonucleotides and investigatetheir binding abilities with complementary sequences. Methods The synthesis was performed on DNAsynthesizer, and the binding behavior was investigated by thermal denaturation studies. Results Fourkinds of single isonucleoside containing oligonucleotides were synthesized. The results of thermaldenaturation showed that the existence of isonucleoside decreased the stability of duplex, and theeffect was more obvious when the isonucleoside was in the middle of the sequence. No obviousdifference was observed when 6'-OH of isonucleoside was free or was protected by allyl group.Conclusions The existence of isonucleoside in oli-gonucleotide makes chain twist and decreased thestability of duplex.展开更多
Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to ev...Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children.Methods:In this five-center case-control study,we enrolled 966 subjects from East China(193 hepatoblastoma patients and 773 healthy controls).The TaqMan method was used to genotype 19 single nucleotide polymorphisms(SNPs)in NER pathway genes,including ERCC1,XPA,XPC,XPD,XPF,and XPG.Then,multivariate logistic regression analysis was performed,and odds ratios(ORs)and 95%confidence intervals(95%CIs)were utilized to assess the strength of associations.Results:Three SNPs were related to hepatoblastoma risk.XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model(adjusted OR=1.49,95%CI=1.07−2.08,P=0.019;adjusted OR=1.66,95%CI=1.12−2.45,P=0.012,respectively).However,XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model(adjusted OR=0.68,95%CI=0.49−0.95;P=0.024).Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups.Moreover,there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci(eQTLs)and splicing quantitative trait loci(sQTLs)analysis.Conclusions:In summary,NER pathway gene polymorphisms(XPC rs2229090,XPD rs3810366,and XPD rs238406)are significantly associated with hepatoblastoma risk,and further research is required to verify these findings.展开更多
BACKGROUND The effect of nonalcoholic fatty liver disease(NAFLD)on the efficacy of nucleoside analogues(NAs)in antiviral therapy for patients with chronic hepatitis B(CHB)remains controversial.AIM To investigate the i...BACKGROUND The effect of nonalcoholic fatty liver disease(NAFLD)on the efficacy of nucleoside analogues(NAs)in antiviral therapy for patients with chronic hepatitis B(CHB)remains controversial.AIM To investigate the influence of NAFLD on virological response in CHB patients undergoing NAs treatment.METHODS Logistic regression analysis was conducted on a cohort of 465 CHB patients from two hospitals to determine whether NAFLD was a risk factor for adverse reactions to NAs.CHB patients were followed up for more than 28 months after initial antiviral treatment,and further validation was performed using different viral load populations.RESULTS NAFLD was identified as an independent risk factor for partial virological response following antiviral therapy with NAs(odds ratio=1.777,P=0.017).In our subsequent analysis focusing on CHB patients with high viral load,the NAFLD group exhibited significantly longer virus shedding time and lower proportion of the complete virological response compared with the non-NAFLD group(16.8±6.1 vs 13.0±6.8,P<0.05).During the 24-month period of antiviral treatment with NAs,hepatitis B virus(HBV)DNA levels decreased slowly in the NAFLD group,and the negative conversion rate of HBV was notably lower than that observed in non-NAFLD group(P=0.001).Similar results were obtained when analyzing patients with low baseline HBV viral load within the NAFLD group.CONCLUSION Coexistence of NAFLD may diminish virological response among CHB patients receiving antiviral treatment with NAs.展开更多
RNA modifications have been involved in numerous biological processes, and aberrations of these modifications are tightly associated with various diseases including cancer. Herein, we developed graphenebased solid-pha...RNA modifications have been involved in numerous biological processes, and aberrations of these modifications are tightly associated with various diseases including cancer. Herein, we developed graphenebased solid-phase extraction and robust ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) combined with stable isotope-dilution for simultaneous enrichment and accurate determination of 17 modified nucleosides in human urine. We found graphene could effectively adsorb various modified nucleosides in human urine samples. With this method, we identified and quantified these modified nucleosides in urine samples collected from lung cancer patients and healthy controls.We revealed that the levels of 12 modified nucleosides were all diminished in urine from lung cancer patients, compared with healthy controls. It is worth noting that we demonstrated, for the first time, the presence of 5,2-O-dimethyluridine(m~5U_m) in human urine. Together, we established a robust analytical method for simultaneous determinations of 17 modified nucleosides in human urine, and our results revealed a close correlation between the concentrations of urinary modified nucleosides and the occurrence of lung cancer, implying the potential applications of these modified nucleosides as noninvasive biomarkers for the early detection of lung cancer. Moreover, this study will stimulate future investigations on the regulatory roles of RNA modifications in the initiation and progression of lung cancer.展开更多
The development of molecular probes or systems with the ability of multiple orthogonal responses is an effective approach to precisely detect biomolecules with similar chemical structures.Herein,we report the synthesi...The development of molecular probes or systems with the ability of multiple orthogonal responses is an effective approach to precisely detect biomolecules with similar chemical structures.Herein,we report the synthesis of a water-soluble TPE-based octacationic cage(1)with the compressed TPE-containing bilayer,which endows it with good fluorescence properties and potential conformation chirality.As a result,1 exhibits molecular recognition for anionic nucleotides within its two“claw”-like cavities to form 1:2 host-vip complexes in water,companying with selective turn-off fluorescence and turn-on CD responses to G/GTP over other nucleotides.展开更多
Purine nucleotides are crucial for the effective operation of cell membrane proteins maintaining the neurotransmitter responses of 5-HT. Major protein targets in the treatment of depression include SERT, N/K ATPase an...Purine nucleotides are crucial for the effective operation of cell membrane proteins maintaining the neurotransmitter responses of 5-HT. Major protein targets in the treatment of depression include SERT, N/K ATPase and GPCR. Each protein target is responsive to a specific complement of drugs: antidepressants (SERT), lithium and cardiogenic steroids (N/K ATPase), 5-HT receptor ligands (GPCR). Computational software is useful for comparing molecular similarity within ligand-ligand and ligand-nucleotide structures. Previous studies demonstrate that GPCR ligands of different pharmacologic classes display relative molecular similarity to nucleotide structures. The current study applies this methodology to compound structures modulating SERT and N/K ATPase receptors. Minimum energy conformers of SERT antagonists demonstrate relative molecular similarity to the structural template of GTP nucleotide. GTP template fits of 5-HT and psilocin are similar, whereas a SERT-like fit is one of several for the ketamine structure. Endogenous and pharmaceutical modulators of Na/K ATPase relate to adenine nucleotide. The fits of cardiogenic steroids to a cGMP template demonstrate similarities and differences between compounds. Relative molecular similarity within the structures of hormones, drugs and nucleotides has implications for neurotransmitter transport and cell signal transduction processes.展开更多
Background:Metformin has pleiotropic effects beyond glucose reduction,including tumor inhibition and immune regulation.It enhanced the anti-tumor effects of programmed cell death protein 1(PD-1)inhibitors in serine/th...Background:Metformin has pleiotropic effects beyond glucose reduction,including tumor inhibition and immune regulation.It enhanced the anti-tumor effects of programmed cell death protein 1(PD-1)inhibitors in serine/threonine kinase 11(STK11)mutant non-small cell lung cancer(NSCLC)through an axis inhibition protein 1(AXIN1)-dependent manner.However,the alterations of tumor metabolism and metabolites upon metformin administration remain unclear.Methods:We performed untargeted metabolomics using liquid chromatography(LC)-mass spectrometry(MS)/MS system and conducted cell experiments to verify the results of bioinformatics analysis.Results:According to the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway database,most metabolites were annotated into metabolism,including nucleotide metabolism.Next,the differentially expressed metabolites in H460(refers to H460 cells),H460_met(refers to metformin-treated H460 cells),and H460_KO_met(refers to metformin-treated Axin1-/-H460 cells)were distributed into six clusters based on expression patterns.The clusters with a reversed expression pattern upon metformin treatment were selected for further analysis.We screened out metabolic pathways through KEGG pathway enrichment analysis and found that multiple nucleotide metabolites enriched in this pathway were upregulated.Furthermore,these metabolites enhanced the cytotoxicity of activated T cells on H460 cells in vitro and can activate the stimulator of the interferon genes(STING)pathway independently of AXIN1.Conclusion:Relying on AXIN1,metformin upregulated multiple nucleotide metabolites which promoted STING signaling and the killing of activated T cells in STK11 mutant NSCLC,indicating a potential immunotherapeutic strategy for STK11 mutant NSCLC.展开更多
Aim: To compare the contents of nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia, and to study the effect of humidity and heat on the content of nucleosides. Methods: The contents of nucleos...Aim: To compare the contents of nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia, and to study the effect of humidity and heat on the content of nucleosides. Methods: The contents of nucleosides were determined by using high performance capillary electrophoresis (HPCE). Beckman P/ACE System 5010 apparatus equipped with a UV detector and a Beckman untreated fused-silica capillary (57 cm 75 mm, 50 cm effective length) was used. Before sample injection, the capillary was rinsed with 1 molL-1 sodium hydroxide solution and running buffer for 5 min, respectively. A voltage of 20 kV was applied for the separation. Pressure injection was 586 kPa for 6 seconds, and the wavelength of detector was 254 nm. The running time was 20 min at 20 oC. The effect of humidity and heat on the contents of nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia was observed for 1, 3, 5 and 10 days at temperature 40 oC, and relative humidity 75%. Results: The content of nucleosides from natural Cordyceps sinensis was higher than that from cultured Cordyceps mycelia. But the contents of nucleosides from freshly collected natural Cordyceps sinensis were very low, even below the limit of quantitation. The contents of nucleosides from natural Cordyceps sinensis were significantly increased by humidity and heat, but this phenomenon was not observed in cultured Cordyceps mycelia. Conclusion: There are differences between the nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia. The nucleosides in natural Cordyceps sinensis may be derived from the degradation of nucleic acids. This implies that adenosine being used for the quality control of natural Cordyceps sinensis may have to be reconsidered.展开更多
Determination of nucleosides and nucleobases is important for the quality control of Fritillaria unibracteata Hsiao et K.C. Hsia var. wabuensis (FUW) due to their physiological and pharmacological actions. In the pr...Determination of nucleosides and nucleobases is important for the quality control of Fritillaria unibracteata Hsiao et K.C. Hsia var. wabuensis (FUW) due to their physiological and pharmacological actions. In the present study, we developed a sensitive and reliable HPLC-diode-array detection method to simultaneously determine ten nucleosides and nucleobases, including cytosine, uracil, cytidine, uridine, thymine, adenine, inosine, guanosine, thymidine and adenosine. Complete separation of all the analytes was achieved on a Zorbax 300 A 300 Extend C18 column with a gradient of methanol-ultrapure water at a flow rate of 1 mL/min in less than 30 min. The diode-array detector wavelength was set at 260 nm for the UV detection of nucleosides and nucleobases. The optimized method provided good linearity (R2〉0.9993 for all the analytes), satisfactory precision (RSD〈3.715%), good repeatability (RSD_〈3.748%) and good recovery (RSD from 97.688% to 102.923%). In addition, the developed method was successfully applied to simultaneous determination of ten nucleosides and nucleobases from FUW, and their content changes of various cultivation time (1-7 years) were further analyzed for the first time. Our findings were useful for ensuring the cultivation time choice of artificial cultivation, quality control, pharmaceutical studies and clinical efficacy of FUW.展开更多
[Objective]The aim was to research the relationship between nucleotide substitutions rate and selective pressure.[Method]Synonymous and nonsynonymous substitutions and their ratios for some sorghum and maize genes in ...[Objective]The aim was to research the relationship between nucleotide substitutions rate and selective pressure.[Method]Synonymous and nonsynonymous substitutions and their ratios for some sorghum and maize genes in nucleus and organelle genomes were analyzed by statistical method,and comparative analysis of related functional genes were carried out.[Result]The pure selective pressures of the related functional genes were similar between nucleus and chloroplast genomes,but was lower in mitochondrial genome.The significant differences of nucleotide substitution rate between sorghum and maize orthologous genes in nucleus genome,and among different functional genes in nucleus genome were mainly due to the nonsynonymous substitution difference.[Conclusion]The molecular evolutional rate of different functional genes and different lineages were influenced by selective pressure.The differences of molecular evolutional rate among nucleus,chloroplast and mitochondria genomes had no direct relationship with selective pressure.展开更多
[ Objedive] This study was aimed to determine the single nucleotide polymorphisms (SNPs) of IGF-I gene in two breeds, Wanxi white goose and Langde goose. [ Method] Two pair of primers was designed based on chicken a...[ Objedive] This study was aimed to determine the single nucleotide polymorphisms (SNPs) of IGF-I gene in two breeds, Wanxi white goose and Langde goose. [ Method] Two pair of primers was designed based on chicken and porcine genomic sequence to amplify the 5' regulatory region of IGF-I, and the sequence was determined and analyzed. [ Result] A total of four SNPs were identified in this region by PCR-SSCP meth- od, that is, A to T at 26 nt, A to G at 215 nt, A to G at 314 nt, and A to T at 325 nt. [ Conclusioa] The two breeds ,wanxi white geese and Langde geese, agree with Hardy-weinberg equilibrium with respect to these SNPS.展开更多
Objective Cyclic nucleotide phosphodiesterase(PDE)is a critical component of the nitric oxide(NO)signaling pathway and plays critical roles in cognition and learning,Parkinson’s disease,attention deficit hyperact...Objective Cyclic nucleotide phosphodiesterase(PDE)is a critical component of the nitric oxide(NO)signaling pathway and plays critical roles in cognition and learning,Parkinson’s disease,attention deficit hyperactivity disorder, psychosis and depression.The PDEs in the brain of guinea pig have not yet been reported.The present study aimed to detect the unknown Pde cDNAs in the brain of guinea pig.Methods Reverse transcription polymerase chain reaction(RT-PCR)and sequence comparison analysis were performed to detect the expression of Pde cDNAs and to assess the identity rates of cDNA and amino acid sequences between guinea pig and human or mouse,respectvely.The RT-PCR primers were located on the conserved region of human PDE and mouse Pde cDNAs.Results Eleven novel Pde cDNAs were detected in the brain of guinea pig(Cavia porcellus),including CpPde1a,CpPde1b,CpPde2a,CpPde4a,CpPde4d,CpPde5a,CpPde6c,CpPde7b, CpPde8a,CpPde9a,and CpPde10a.The identity rates of the Pde cDNA sequences between guinea pig and human ranged from 83.8%to 94.3%,and those of the amino acid sequences ranged from 91.9%to 100%.The identity rates of Pde cDNA sequences between guinea pig and mouse ranged from 84.6%to 92.1%,and those of amino acid sequences ranged from 91.2% to 99.2%.The average identity rate of the 11 Pde cDNA sequences between guinea pig and human was significantly higher(P 0.01)than that between guinea pig and mouse.The putative partial amino acid sequences of guinea pig contained at least one of the conserved domains of human and mouse PDE proteins.Conclusion These results indicate that the brainexpressed Pde genes are identified in guinea pig,which lays the foundation for further investigating the physiological roles of PDE proteins in the brain.展开更多
基金supported by the Beijing Municipal Foundation for Clinical Research[Z181100001718033]the Project for Prevention and Treatment of AIDS and Viral Hepatitis[2018ZX10301-404]the National Major Science and Technology Project of China[2019YFC0840704].
文摘Background and aims:Cessation of nucleoside/nucleotide analogue(Nuc)therapy in patients with HBeAg-negative chronic hepatitis B(CHB)remains controversial.Methods:In this prospective,single-center cohort study,we recruited 45 patients with HBeAg-negative CHB from The Fifth Medical Center of Chinese People's Liberation Army General Hospital in China's Mainland.Patients were classified into a Nuc cessation group(n?27)and Nuc continuation group(n?18)and followed-up for 36 months.Nuc were stopped after being inactive for at least 4 years(normal alanine aminotransferase(ALT),undetectable hepatitis B virus(HBV)DNA),with liver fibrosisStage1(S1)and inflammationGrade(G1).Results:Within 3 years of follow-up,51.9%patients with Nuc cessation had virological relapse and 14.8%had ALT elevation,while all patients with Nuc continuation had undetectable HBV DNA and normal ALT.The rate of HBsAg loss after Nuc cessation was 22.2%compared with no seroconversion in patients with Nuc continuation.The hepatitis flare rate was 11.1%and there were no cases of hepatic decompensation after Nuc cessation.End of treatment(EOT)HBsAg,HBV RNA,and decline in HBV core-related antigen(HBcrAg)rate were predictive markers for HBsAg seroconversion at 6 months post-Nuc cessation.Conclusion:This study showed favorable HBsAg loss and low hepatitis flare rates after Nuc cessation.EOT HBsAg,HBV RNA,and decline in HBcrAg rate were predictive markers for HBsAg seroconversion at 6 months post-Nuc cessation.
基金Supported by The National Natural Science Foundation of China,No.82350127 and No.82241013the Shanghai Natural Science Foundation,No.20ZR1411600+2 种基金the Shanghai Shenkang Hospital Development Center,No.SHDC2020CR4039the Bethune Ethicon Excellent Surgery Foundation,No.CESS2021TC04Xuhui District Medical Research Project of Shanghai,No.SHXH201805.
文摘BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.
文摘The physiology of the central and enteric nervous systems and gastric muscle contributes to the complexities encountered in the research and clinical management of gastroparesis. A wide range of prescription drugs target the underlying neurotransmitter imbalances and adjust nucleotide levels in appropriate tissues, but treatment is unsatisfactory, as our understanding of the condition is far from complete. In this study, computational software is used to focus on the adenine nucleotide, ATP, as a comparative template for the structures of drugs used in gastroparesis treatment. The results demonstrate that muscarinic, dopamine, serotonin (5-HT) and histamine receptor ligand classes relate structurally and differentially to the molecular structure of ATP. In these neurotransmitter classes, compounds do not target cell membrane receptor G-protein signal transduction in a manner that provides a single mechanism for improving gastroparesis symptoms. The exploration of alternative nucleotide-based deficiencies of KATP channels, Na+/K+ATPases and guanine nucleotide directed nitrergic mechanisms should enhance our experimental approach to understanding this condition.
基金Supported by the National Key Research and Development Program of China,No.2021YFC2700700 and No.2021YFC2700704Capital’s Funds for Health Improvement and Research(CFH)in People’s Republic of China,No.2020-1-5112.
文摘BACKGROUND There are conflicting results on the potential correlation between folic acid and gestational diabetes mellitus(GDM),and the correlation between genetic factors related to folic acid metabolism pathways and GDM remains to be revealed.AIM To examine the association between single-nucleotide polymorphisms(SNPs)of enzyme genes in the folate metabolite pathway as well as that between GDM-related genes and risk for GDM.METHODS A nested case-control study was conducted with GDM cases(n=412)and healthy controls(n=412).DNA was extracted blood samples and SNPs were genotyped using Agena Bioscience’s MassARRAY gene mass spectrometry system.The associations between different SNPs of genes and the risk for GDM were estimated using logistic regression models.The generalized multi-factor dimensionality reduction(GMDR)method was used to analyze gene-gene and gene-environment interactions using the GMDR 0.9 software.RESULTS The variation allele frequency of melatonin receptor 1B(MTNR1B)rs10830963 was higher in the GDM group than in controls(P<0.05).MTNR1B rs10830963 mutant G was associated with risk for GDM[adjusted odds ratio(aOR):1.43;95%confidence interval(95%CI):1.13-1.80]in the additive model.MTNR1B rs10830963 GG+GC was significantly associated with the risk for GDM(aOR:1.65;95%CI:1.23-2.22)in the dominant model.The two-locus model of MTNR1B rs10830963 and CHEMERIN rs4721 was the best model(P<0.05)for gene-gene interactions in the GMDR results.The high-risk rs10830963×rs4721 type of interaction was a risk factor for GDM(aOR:2.09;95%CI:1.49-2.93).CONCLUSION This study does not find an association between SNPs of folate metabolic enzymes and risk for GDM.The G mutant allele of MTNR1B rs10830963 is identified as a risk factor for GDM in the additive model,and there may be gene-gene interactions between MTNR1B rs10830963 and CHEMERIN rs4721.It is conducive to studying the causes of GDM and provides a new perspective for the precise prevention of this disease.
基金supported by the National Natural Science Foundation for Distinguished Young Scholars (No. 81725021)the National Natural Science Foundation of China (Nos.82003633 and 82173705)。
文摘Amoenucles A-F(1-6),six previously undescribed nucleoside derivatives,and two known analogs(7 and 8)were isolated from the culture of Aspergillus amoenus TJ507.Their structures were elucidated through spectroscopic analysis,single-crystal X-ray crystallography,and chemical reactions.Notably,3 and 4 represent the first reported instances of nucleosides with an attached pyrrole moiety.Of particular significance,the absolute configuration of the sugar moiety of 1-4 was determined using nuclear magnetic resonance(NMR),electric circular dichroism(ECD)calculations,and a hydrolysis reaction,presenting a potentially valuable method for confirming nucleoside structures.Furthermore,1,2,and 5-8 exhibited potential tumor necrosis factorα(TNF-α)inhibitory activities,which may provide a novel chemical template for the development of agents targeting autoimmune and inflammatory diseases.
基金supported by the National Natural Science Foundation of China(32130013,32070434)the National Key Research and Development Program of China(2022YFC2601601)+1 种基金the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK05010112,2019QZKK0304-02)Hainan Tropical Rainforest Conservation Research Project,ZDYF2023RDYL01(supported by the Hainan Institute of National Park,HINP,KY-24ZK02).
文摘Understanding the genetic diversity–area relationship(GAR)is essential for comprehending how species adapt to environmental changes,as genetic diversity is an indicator of a species’adaptive potential.Variation in environmental adaptation capacity exists among species and animal taxa with different distribution areas,highlighting the importance of understanding the GAR.To obtain a more comprehensive understanding of the GAR in terrestrial vertebrates,we assessed both haplotype diversity–area and nucleotide diversity–area relationships using 25,453 cytochrome c oxidase subunit I(COI)sequences from 142 amphibian species,574 bird species,and 342 mammal species.We found that both measures of genetic diversity increased with species range size across major animal groups.Nevertheless,the GAR did not differ among animal groups,while haplotype diversity performed better than nucleotide diversity in profiling the GAR,as indicated by higher R2 values.The difference in the modeling fit may stem from the distinct biological and mathematical significance of nucleotide diversity and haplotype diversity.These results suggest that the GAR follows similar rules among different animal taxa.Furthermore,haplotype diversity may serve as a more reliable indicator for assessing the potential effects of area size changes on animal populations and provide better guidance for conserving genetic diversity.
基金supported by grants(92168103,32171417,2019CXJQ01)from the National Nature Science Foundation of China,Shanghai Municipal GovernmentPeak Disciplines(Type IV)of Institutions of Higher Learning in Shanghai.
文摘Genome rearrangement is an important process that leads to genetic diversity,including mutation-related insertions,deletions,or inversions in the genome[1,2].
基金Supported by the National Natural Science Foundation of China,No.81573507,No.81473283,No.81173131,and No.81320108027Guangdong Provincial Key Laboratory Construction Foundation,No.2017B030314030+1 种基金The National Key Research and Development Program,No.2016YFC0905003the 111 Project,No.B16047
文摘BACKGROUND Thiopurine-induced leukopenia(TIL)is a life-threatening toxicity and occurs with a high frequency in the Asian population.Although nucleoside diphosphate-linked moiety X-type motif 15(NUDT15)variants significantly improve the predictive sensitivity of TIL,more than 50%of cases of this toxicity cannot be predicted by this mutation.The potential use of the 6-thioguanine nucleotide(6TGN)level to predict TIL has been explored,but no decisive conclusion has been reached.Can we increase the predictive sensitivity based on 6TGN by subgrouping patients according to their NUDT15 R139C genotypes?AIM To determine the 6TGN cut-off levels after dividing patients into subgroups according to their NUDT15 R139C genotypes.METHODS Patients’clinical and epidemiological characteristics were collected from medical records from July 2014 to February 2017.NUDT15 R139C,thiopurine S methyltransferase,and 6TGN concentrations were measured.RESULTS A total of 411 Crohn’s disease patients were included.TIL was observed in 72 individuals with a median 6TGN level of 323.4 pmol/8×10^8 red blood cells(RBC),which was not different from that of patients without TIL(P=0.071).Then,we compared the 6TGN levels based on NUDT15 R139C.For CC(n=342)and CT(n=65)genotypes,the median 6TGN level in patients with TIL was significantly higher than that in patients without(474.8 vs 306.0 pmol/8×10^8 RBC,P=9.4×10-^5;291.7 vs 217.6 pmol/8×10^8 RBC,P=0.039,respectively).The four TT carriers developed TIL,with a median 6TGN concentration of 135.8 pmol/8×10^8 RBC.The 6TGN cut-off levels were 411.5 and 319.2 pmol/8×108 RBC for the CC and CT groups,respectively.CONCLUSION The predictive sensitivity of TIL based on 6TGN is dramatically increased after subgrouping according to NUDT15 R139C genotypes.Applying 6TGN cut-off levels to adjust thiopurine therapies based on NUDT15 is strongly recommended.
文摘Aim To synthesize isonucleoside-incorporated oligonucleotides and investigatetheir binding abilities with complementary sequences. Methods The synthesis was performed on DNAsynthesizer, and the binding behavior was investigated by thermal denaturation studies. Results Fourkinds of single isonucleoside containing oligonucleotides were synthesized. The results of thermaldenaturation showed that the existence of isonucleoside decreased the stability of duplex, and theeffect was more obvious when the isonucleoside was in the middle of the sequence. No obviousdifference was observed when 6'-OH of isonucleoside was free or was protected by allyl group.Conclusions The existence of isonucleoside in oli-gonucleotide makes chain twist and decreased thestability of duplex.
基金supported by grants from the Innovation and Cultivation Fund Project of the Seventh Medical Center,PLA General Hospital(No.QZX-2023-7)Postdoctoral Science Foundation of China(No.2021M691649)Postdoctoral Science Foundation of Jiangsu Province(No.2021K524C).
文摘Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children.Methods:In this five-center case-control study,we enrolled 966 subjects from East China(193 hepatoblastoma patients and 773 healthy controls).The TaqMan method was used to genotype 19 single nucleotide polymorphisms(SNPs)in NER pathway genes,including ERCC1,XPA,XPC,XPD,XPF,and XPG.Then,multivariate logistic regression analysis was performed,and odds ratios(ORs)and 95%confidence intervals(95%CIs)were utilized to assess the strength of associations.Results:Three SNPs were related to hepatoblastoma risk.XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model(adjusted OR=1.49,95%CI=1.07−2.08,P=0.019;adjusted OR=1.66,95%CI=1.12−2.45,P=0.012,respectively).However,XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model(adjusted OR=0.68,95%CI=0.49−0.95;P=0.024).Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups.Moreover,there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci(eQTLs)and splicing quantitative trait loci(sQTLs)analysis.Conclusions:In summary,NER pathway gene polymorphisms(XPC rs2229090,XPD rs3810366,and XPD rs238406)are significantly associated with hepatoblastoma risk,and further research is required to verify these findings.
基金Supported by National Science and Technology Major Project of China,No.92169121National Key R and D Projects,No.2022YFC2305100Wuhan Science and Technology Bureau Knowledge Innovation Special Foundation of Hubei Province,No.2022020801010588.
文摘BACKGROUND The effect of nonalcoholic fatty liver disease(NAFLD)on the efficacy of nucleoside analogues(NAs)in antiviral therapy for patients with chronic hepatitis B(CHB)remains controversial.AIM To investigate the influence of NAFLD on virological response in CHB patients undergoing NAs treatment.METHODS Logistic regression analysis was conducted on a cohort of 465 CHB patients from two hospitals to determine whether NAFLD was a risk factor for adverse reactions to NAs.CHB patients were followed up for more than 28 months after initial antiviral treatment,and further validation was performed using different viral load populations.RESULTS NAFLD was identified as an independent risk factor for partial virological response following antiviral therapy with NAs(odds ratio=1.777,P=0.017).In our subsequent analysis focusing on CHB patients with high viral load,the NAFLD group exhibited significantly longer virus shedding time and lower proportion of the complete virological response compared with the non-NAFLD group(16.8±6.1 vs 13.0±6.8,P<0.05).During the 24-month period of antiviral treatment with NAs,hepatitis B virus(HBV)DNA levels decreased slowly in the NAFLD group,and the negative conversion rate of HBV was notably lower than that observed in non-NAFLD group(P=0.001).Similar results were obtained when analyzing patients with low baseline HBV viral load within the NAFLD group.CONCLUSION Coexistence of NAFLD may diminish virological response among CHB patients receiving antiviral treatment with NAs.
基金financially supported by National Natural Science Foundation of China (No.22176167)Fundamental Research Funds for the Central Universities (No.226-2023-00088)Key R&D Program of Zhejiang Province (No.2021C03125)。
文摘RNA modifications have been involved in numerous biological processes, and aberrations of these modifications are tightly associated with various diseases including cancer. Herein, we developed graphenebased solid-phase extraction and robust ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) combined with stable isotope-dilution for simultaneous enrichment and accurate determination of 17 modified nucleosides in human urine. We found graphene could effectively adsorb various modified nucleosides in human urine samples. With this method, we identified and quantified these modified nucleosides in urine samples collected from lung cancer patients and healthy controls.We revealed that the levels of 12 modified nucleosides were all diminished in urine from lung cancer patients, compared with healthy controls. It is worth noting that we demonstrated, for the first time, the presence of 5,2-O-dimethyluridine(m~5U_m) in human urine. Together, we established a robust analytical method for simultaneous determinations of 17 modified nucleosides in human urine, and our results revealed a close correlation between the concentrations of urinary modified nucleosides and the occurrence of lung cancer, implying the potential applications of these modified nucleosides as noninvasive biomarkers for the early detection of lung cancer. Moreover, this study will stimulate future investigations on the regulatory roles of RNA modifications in the initiation and progression of lung cancer.
基金the National Natural Science Foundation of China(Nos.22122108 and 21971208)the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(No.2021JC-37)the Fok Ying Tong Education Foundation(No.171010).
文摘The development of molecular probes or systems with the ability of multiple orthogonal responses is an effective approach to precisely detect biomolecules with similar chemical structures.Herein,we report the synthesis of a water-soluble TPE-based octacationic cage(1)with the compressed TPE-containing bilayer,which endows it with good fluorescence properties and potential conformation chirality.As a result,1 exhibits molecular recognition for anionic nucleotides within its two“claw”-like cavities to form 1:2 host-vip complexes in water,companying with selective turn-off fluorescence and turn-on CD responses to G/GTP over other nucleotides.
文摘Purine nucleotides are crucial for the effective operation of cell membrane proteins maintaining the neurotransmitter responses of 5-HT. Major protein targets in the treatment of depression include SERT, N/K ATPase and GPCR. Each protein target is responsive to a specific complement of drugs: antidepressants (SERT), lithium and cardiogenic steroids (N/K ATPase), 5-HT receptor ligands (GPCR). Computational software is useful for comparing molecular similarity within ligand-ligand and ligand-nucleotide structures. Previous studies demonstrate that GPCR ligands of different pharmacologic classes display relative molecular similarity to nucleotide structures. The current study applies this methodology to compound structures modulating SERT and N/K ATPase receptors. Minimum energy conformers of SERT antagonists demonstrate relative molecular similarity to the structural template of GTP nucleotide. GTP template fits of 5-HT and psilocin are similar, whereas a SERT-like fit is one of several for the ketamine structure. Endogenous and pharmaceutical modulators of Na/K ATPase relate to adenine nucleotide. The fits of cardiogenic steroids to a cGMP template demonstrate similarities and differences between compounds. Relative molecular similarity within the structures of hormones, drugs and nucleotides has implications for neurotransmitter transport and cell signal transduction processes.
基金People’s Hospital of Xuyong County-Southwest Medical University Science and Technology Strategic Cooperation Project(2023XYXNYD05)Guangdong Association of Clinical Trials(GACT)/Chinese Thoracic Oncology Group(CTONG)and Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer(2017B030314120)Natural Science Foundation of Chongqing Municipality(CSTB2023NSCQ-MSX0554).
文摘Background:Metformin has pleiotropic effects beyond glucose reduction,including tumor inhibition and immune regulation.It enhanced the anti-tumor effects of programmed cell death protein 1(PD-1)inhibitors in serine/threonine kinase 11(STK11)mutant non-small cell lung cancer(NSCLC)through an axis inhibition protein 1(AXIN1)-dependent manner.However,the alterations of tumor metabolism and metabolites upon metformin administration remain unclear.Methods:We performed untargeted metabolomics using liquid chromatography(LC)-mass spectrometry(MS)/MS system and conducted cell experiments to verify the results of bioinformatics analysis.Results:According to the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway database,most metabolites were annotated into metabolism,including nucleotide metabolism.Next,the differentially expressed metabolites in H460(refers to H460 cells),H460_met(refers to metformin-treated H460 cells),and H460_KO_met(refers to metformin-treated Axin1-/-H460 cells)were distributed into six clusters based on expression patterns.The clusters with a reversed expression pattern upon metformin treatment were selected for further analysis.We screened out metabolic pathways through KEGG pathway enrichment analysis and found that multiple nucleotide metabolites enriched in this pathway were upregulated.Furthermore,these metabolites enhanced the cytotoxicity of activated T cells on H460 cells in vitro and can activate the stimulator of the interferon genes(STING)pathway independently of AXIN1.Conclusion:Relying on AXIN1,metformin upregulated multiple nucleotide metabolites which promoted STING signaling and the killing of activated T cells in STK11 mutant NSCLC,indicating a potential immunotherapeutic strategy for STK11 mutant NSCLC.
文摘Aim: To compare the contents of nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia, and to study the effect of humidity and heat on the content of nucleosides. Methods: The contents of nucleosides were determined by using high performance capillary electrophoresis (HPCE). Beckman P/ACE System 5010 apparatus equipped with a UV detector and a Beckman untreated fused-silica capillary (57 cm 75 mm, 50 cm effective length) was used. Before sample injection, the capillary was rinsed with 1 molL-1 sodium hydroxide solution and running buffer for 5 min, respectively. A voltage of 20 kV was applied for the separation. Pressure injection was 586 kPa for 6 seconds, and the wavelength of detector was 254 nm. The running time was 20 min at 20 oC. The effect of humidity and heat on the contents of nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia was observed for 1, 3, 5 and 10 days at temperature 40 oC, and relative humidity 75%. Results: The content of nucleosides from natural Cordyceps sinensis was higher than that from cultured Cordyceps mycelia. But the contents of nucleosides from freshly collected natural Cordyceps sinensis were very low, even below the limit of quantitation. The contents of nucleosides from natural Cordyceps sinensis were significantly increased by humidity and heat, but this phenomenon was not observed in cultured Cordyceps mycelia. Conclusion: There are differences between the nucleosides from natural Cordyceps sinensis and cultured Cordyceps mycelia. The nucleosides in natural Cordyceps sinensis may be derived from the degradation of nucleic acids. This implies that adenosine being used for the quality control of natural Cordyceps sinensis may have to be reconsidered.
基金The Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20115103110009)"211"Project Double-Support Plan of Sichuan Agricultural Un iversity(Grant No.03570313)Modernization of Chinese Traditional Medicines in Hainan Province(Grant No.ZY201410)
文摘Determination of nucleosides and nucleobases is important for the quality control of Fritillaria unibracteata Hsiao et K.C. Hsia var. wabuensis (FUW) due to their physiological and pharmacological actions. In the present study, we developed a sensitive and reliable HPLC-diode-array detection method to simultaneously determine ten nucleosides and nucleobases, including cytosine, uracil, cytidine, uridine, thymine, adenine, inosine, guanosine, thymidine and adenosine. Complete separation of all the analytes was achieved on a Zorbax 300 A 300 Extend C18 column with a gradient of methanol-ultrapure water at a flow rate of 1 mL/min in less than 30 min. The diode-array detector wavelength was set at 260 nm for the UV detection of nucleosides and nucleobases. The optimized method provided good linearity (R2〉0.9993 for all the analytes), satisfactory precision (RSD〈3.715%), good repeatability (RSD_〈3.748%) and good recovery (RSD from 97.688% to 102.923%). In addition, the developed method was successfully applied to simultaneous determination of ten nucleosides and nucleobases from FUW, and their content changes of various cultivation time (1-7 years) were further analyzed for the first time. Our findings were useful for ensuring the cultivation time choice of artificial cultivation, quality control, pharmaceutical studies and clinical efficacy of FUW.
基金Supported by Natural Science Foundation of Jiangsu Province(BK2009235)~~
文摘[Objective]The aim was to research the relationship between nucleotide substitutions rate and selective pressure.[Method]Synonymous and nonsynonymous substitutions and their ratios for some sorghum and maize genes in nucleus and organelle genomes were analyzed by statistical method,and comparative analysis of related functional genes were carried out.[Result]The pure selective pressures of the related functional genes were similar between nucleus and chloroplast genomes,but was lower in mitochondrial genome.The significant differences of nucleotide substitution rate between sorghum and maize orthologous genes in nucleus genome,and among different functional genes in nucleus genome were mainly due to the nonsynonymous substitution difference.[Conclusion]The molecular evolutional rate of different functional genes and different lineages were influenced by selective pressure.The differences of molecular evolutional rate among nucleus,chloroplast and mitochondria genomes had no direct relationship with selective pressure.
文摘[ Objedive] This study was aimed to determine the single nucleotide polymorphisms (SNPs) of IGF-I gene in two breeds, Wanxi white goose and Langde goose. [ Method] Two pair of primers was designed based on chicken and porcine genomic sequence to amplify the 5' regulatory region of IGF-I, and the sequence was determined and analyzed. [ Result] A total of four SNPs were identified in this region by PCR-SSCP meth- od, that is, A to T at 26 nt, A to G at 215 nt, A to G at 314 nt, and A to T at 325 nt. [ Conclusioa] The two breeds ,wanxi white geese and Langde geese, agree with Hardy-weinberg equilibrium with respect to these SNPS.
基金supported by the National Natural Science Foundation of China(No.31070928,30600198)the Natural Science Foundation of Guangdong Province,China(No.06301101)the Medical Research Program of Guangdong Province,China(No.A2010259)
文摘Objective Cyclic nucleotide phosphodiesterase(PDE)is a critical component of the nitric oxide(NO)signaling pathway and plays critical roles in cognition and learning,Parkinson’s disease,attention deficit hyperactivity disorder, psychosis and depression.The PDEs in the brain of guinea pig have not yet been reported.The present study aimed to detect the unknown Pde cDNAs in the brain of guinea pig.Methods Reverse transcription polymerase chain reaction(RT-PCR)and sequence comparison analysis were performed to detect the expression of Pde cDNAs and to assess the identity rates of cDNA and amino acid sequences between guinea pig and human or mouse,respectvely.The RT-PCR primers were located on the conserved region of human PDE and mouse Pde cDNAs.Results Eleven novel Pde cDNAs were detected in the brain of guinea pig(Cavia porcellus),including CpPde1a,CpPde1b,CpPde2a,CpPde4a,CpPde4d,CpPde5a,CpPde6c,CpPde7b, CpPde8a,CpPde9a,and CpPde10a.The identity rates of the Pde cDNA sequences between guinea pig and human ranged from 83.8%to 94.3%,and those of the amino acid sequences ranged from 91.9%to 100%.The identity rates of Pde cDNA sequences between guinea pig and mouse ranged from 84.6%to 92.1%,and those of amino acid sequences ranged from 91.2% to 99.2%.The average identity rate of the 11 Pde cDNA sequences between guinea pig and human was significantly higher(P 0.01)than that between guinea pig and mouse.The putative partial amino acid sequences of guinea pig contained at least one of the conserved domains of human and mouse PDE proteins.Conclusion These results indicate that the brainexpressed Pde genes are identified in guinea pig,which lays the foundation for further investigating the physiological roles of PDE proteins in the brain.