Poly(2-oxazoline)(POx)has been regarded as a potential candidate for drug delivery carrier to meet the challenges of nanomedicine clinical translation,due to its excellent biocompatibility and self-assembly properties...Poly(2-oxazoline)(POx)has been regarded as a potential candidate for drug delivery carrier to meet the challenges of nanomedicine clinical translation,due to its excellent biocompatibility and self-assembly properties.The drug loading capacity and stability of amphiphilic POxs as drug nanocarriers,however,tend to be insufficient.Herein,we report a strategy to prepare nucleobase-crosslinked POx nanoparticles(NPs)with enhanced stability and ultra-high paclitaxel(PTX)loading capacity for breast cancer therapy.An amphiphilic amine-functionalized POx(PMBEOx-NH_(2))was firstly prepared through a click reaction between cysteamines and vinyl groups in poly(2-methyl-2-oxazoline)-block-poly(2–butyl–2-oxazoline-co-2-butenyl-2-oxazoline)(PMBEOx).Complementary nucleobase-pairs adenine(A)and uracil(U)were subsequently conjugated to PMBEOx-NH2 to give functional POxs(POxA and POxU),respectively.Due to the nucleobase interactions formed between A and U,NPs formed by POxA and POxU at a molar ratio of 1:1 displayed ultrahigh PTX loading capacity(38.2%,PTX/POxA@U),excellent stability,and reduced particle size compared to the uncross-linked PTX-loaded NPs(PTX/PMBEOx).Besides the prolonged blood circulation and enhanced tumor accumulation,the smaller PTX/POxA@U NPs also have better tumor penetration ability compared with PTX/PMBEOx,thus leading to a higher tumor suppression rate in two murine breast cancer models(E0711 and 4T1).These results proved that the therapeutic effect of chemotherapeutic drugs could be improved remarkably through a reasonable optimization of nanocarriers.展开更多
基金financially supported by the National Natural Science Foundation of China (51973215, 52025035, 52103194, 22105199, 51829302)Bureau of International Cooperation Chinese Academy of Science (121522KYSB20200029)the Youth Innovation Promotion Association of Chinese Academy of Sciences (2020232)
文摘Poly(2-oxazoline)(POx)has been regarded as a potential candidate for drug delivery carrier to meet the challenges of nanomedicine clinical translation,due to its excellent biocompatibility and self-assembly properties.The drug loading capacity and stability of amphiphilic POxs as drug nanocarriers,however,tend to be insufficient.Herein,we report a strategy to prepare nucleobase-crosslinked POx nanoparticles(NPs)with enhanced stability and ultra-high paclitaxel(PTX)loading capacity for breast cancer therapy.An amphiphilic amine-functionalized POx(PMBEOx-NH_(2))was firstly prepared through a click reaction between cysteamines and vinyl groups in poly(2-methyl-2-oxazoline)-block-poly(2–butyl–2-oxazoline-co-2-butenyl-2-oxazoline)(PMBEOx).Complementary nucleobase-pairs adenine(A)and uracil(U)were subsequently conjugated to PMBEOx-NH2 to give functional POxs(POxA and POxU),respectively.Due to the nucleobase interactions formed between A and U,NPs formed by POxA and POxU at a molar ratio of 1:1 displayed ultrahigh PTX loading capacity(38.2%,PTX/POxA@U),excellent stability,and reduced particle size compared to the uncross-linked PTX-loaded NPs(PTX/PMBEOx).Besides the prolonged blood circulation and enhanced tumor accumulation,the smaller PTX/POxA@U NPs also have better tumor penetration ability compared with PTX/PMBEOx,thus leading to a higher tumor suppression rate in two murine breast cancer models(E0711 and 4T1).These results proved that the therapeutic effect of chemotherapeutic drugs could be improved remarkably through a reasonable optimization of nanocarriers.