As the high-density nuclear equation of state(EOS) is not very well constrained, we suggest that the structural properties from the finite systems can be used to extract a more accurate constraint. By including the st...As the high-density nuclear equation of state(EOS) is not very well constrained, we suggest that the structural properties from the finite systems can be used to extract a more accurate constraint. By including the strangeness degrees of freedom, the hyperon or anti-kaon, the finite systems can then have a rather high-density core which is relevant to the nuclear EOS at high densities directly. It is found that the density dependence of the symmetry energy is sensitive to the properties of multi-K hypernuclei, while the high-density EOS of symmetric matter correlates sensitively to the properties of kaonic nuclei.展开更多
Accurate and reliable nuclear data libraries are essential for calculation and design of advanced nuclea systems. A 1200 fine group nuclear data library Hybrid Evaluated Nuclear Data Library/Fine Group(HENDL/FG with n...Accurate and reliable nuclear data libraries are essential for calculation and design of advanced nuclea systems. A 1200 fine group nuclear data library Hybrid Evaluated Nuclear Data Library/Fine Group(HENDL/FG with neutrons of up to 150 Me V has been developed to improve the accuracy of neutronics calculations and anal ysis. Corrections of Doppler, resonance self-shielding, and thermal upscatter effects were done for HENDL/FG Shielding and critical safety benchmarks were performed to test the accuracy and reliability of the library. The dis crepancy between calculated and measured nuclea parameters fell into a reasonable range.展开更多
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
In nuclear power engineering,the quality requirements for concrete are extremely stringent.Concrete structures must exhibit high durability to withstand the effects of nuclear radiation,chemical corrosion,and environm...In nuclear power engineering,the quality requirements for concrete are extremely stringent.Concrete structures must exhibit high durability to withstand the effects of nuclear radiation,chemical corrosion,and environmental changes.In particular,nuclear power projects impose higher design standards and safety requirements regarding concrete density.Traditional manual vibration and visual inspection methods are difficult to ensure the required level of concrete compaction.This paper presents an intelligent vibration technology for concrete in nuclear power engineering to enhance construction quality and efficiency.By integrating intelligent sensors,control systems,and data processing algorithms,the technology enables real-time monitoring and evaluation of the vibration process.Results show that intelligent vibration technology effectively ensures the density and uniformity of concrete in nuclear power engineering,thereby improving structural safety and reliability.展开更多
The α-nucleus interaction is crucial in the description of α decay. Recently, we developed a pocket-type dynamical doublefolding potential(DDFP) that effectively incorporates both the surface-medium effect and inter...The α-nucleus interaction is crucial in the description of α decay. Recently, we developed a pocket-type dynamical doublefolding potential(DDFP) that effectively incorporates both the surface-medium effect and interior Pauli repulsion in α decay [H. Zheng et al., Phys. Rev. C 109, L011301(2024)]. This potential results in a pocket geometry within the nuclear surface region, which is consistent with the α-clustering characteristics predicted by microscopic calculations. In this study, the accuracy of the pocket-type DDFP was validated via systematic calculations of α-decay half-lives and an extended evaluation of the nuclear charge radii of the daughter nuclei. The results demonstrate good agreement with the experimental data for both quantities, thereby confirming the reliability of the DDFP model. Compared with calculations that use α-nucleus interactions derived from conventional double-folding procedures, DDFP employs fewer adjustable parameters to achieve a more accurate description of the charge radii based on the experimental α-decay energies.展开更多
Herein,we employ the threshold energy neutron analysis(TENA)technique to introduce the world's first active interrogation system to detect special nuclear materials(SNMs),including U-235 and Pu-239.The system util...Herein,we employ the threshold energy neutron analysis(TENA)technique to introduce the world's first active interrogation system to detect special nuclear materials(SNMs),including U-235 and Pu-239.The system utilizes a DD neutron generator based on inertial electrostatic confinement(IEC)to interrogate suspicious objects.To detect secondary neutrons produced during fission reactions induced in SNMs,a tensioned metastable fluid detector(TMFD)is employed.The current status of the system's development is reported in this paper,accompanied by the results from experiments conducted to detect 10 g of highly enriched uranium(HEU).Notably,the experimental findings demonstrate a distinct difference in the count rates of measurements with and without HEU.This difference in count rates surpasses two times the standard deviation,indicating a confidence level of more than 96% for identifying the presence of HEU.The paper presents and extensively discusses the proof-of-principle experimental results,along with the system's planned trajectory.展开更多
A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ...A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.展开更多
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor...Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.展开更多
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat...This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.展开更多
By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bi...By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.展开更多
The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis.Nuclear receptors(NRs)are now understood to be crucial in bone physiology and pathology.However,...The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis.Nuclear receptors(NRs)are now understood to be crucial in bone physiology and pathology.However,the function of the Farnesoid X receptor(FXR),a member of the NR family,in regulating bone homeostasis remains incompletely understood.In this study,in vitro and in vivo models revealed delayed bone development and an osteoporosis phenotype in mice lacking FXR in bone marrow mesenchymal stem cells(BMSCs)and osteoblasts due to impaired osteoblast differentiation.Mechanistically,FXR could stabilize RUNX2 by inhibiting Thoc6-mediated ubiquitination,thereby promoting osteogenic activity in BMSCs.Moreover,activated FXR could directly bind to the Thoc6 promoter,suppressing its expression.The interaction between RUNX2 and Thoc6 was mediated by the Runt domain of RUNX2 and the WD repeat of Thoc6.Additionally,Obeticholic acid(OCA),an orally available FXR agonist,could ameliorate bone loss in an ovariectomy(OVX)-induced osteoporotic mouse model.Taken together,our findings suggest that FXR plays pivotal roles in osteoblast differentiation by regulating RUNX2 stability and that targeting FXR may be a promising therapeutic approach for osteoporosis.展开更多
The Monte Carlo(MC)method offers significant advantages in handling complex geometries and physical processes in particle transport problems and has become a widely used approach in reactor physics analysis,radiation ...The Monte Carlo(MC)method offers significant advantages in handling complex geometries and physical processes in particle transport problems and has become a widely used approach in reactor physics analysis,radiation shielding design,and medical physics.However,with the rapid advancement of new nuclear energy systems,the Monte Carlo method faces challenges in efficiency,accuracy,and adaptability,limiting its effectiveness in meeting modern design requirements.Overcoming technical obstacles related to high-fidelity coupling,high-resolution computation,and intelligent design is essential for using the Monte Carlo method as a reliable tool in numerical analysis for these new nuclear energy systems.To address these challenges,the Nuclear Energy and Application Laboratory(NEAL)team at the University of South China developed a multifunctional and generalized intelligent code platform called MagicMC,based on the Monte Carlo particle transport method.MagicMC is a developing tool dedicated to nuclear applications,incorporating intelligent methodologies.It consists of two primary components:a basic unit and a functional unit.The basic unit,which functions similarly to a standard Monte Carlo particle transport code,includes seven modules:geometry,source,transport,database,tally,output,and auxiliary.The functional unit builds on the basic unit by adding functional modules to address complex and diverse applications in nuclear analysis.MagicMC introduces a dynamic Monte Carlo particle transport algorithm to address time-space particle transport problems within emerging nuclear energy systems and incorporates a CPU-GPU heterogeneous parallel framework to enable high-efficiency,high-resolution simulations for large-scale computational problems.Anticipating future trends in intelligent design,MagicMC integrates several advanced features,including CAD-based geometry modeling,global variance reduction methods,multi-objective shielding optimization,high-resolution activation analysis,multi-physics coupling,and radiation therapy.In this paper,various numerical benchmarks-spanning reactor transient simulations,material activation analysis,radiation shielding optimization,and medical dosimetry analysis-are presented to validate MagicMC.The numerical results demonstrate MagicMC's efficiency,accuracy,and reliability in these preliminary applications,underscoring its potential to support technological advancements in developing high-fidelity,high-resolution,and high-intelligence MC-based tools for advanced nuclear applications.展开更多
Pulpitis is a common infective oral disease in clinical situations.The regulatory mechanisms of immune defense in pulpitis are still being investigated.Osteomodulin(OMD)is a small leucine-rich proteoglycan family memb...Pulpitis is a common infective oral disease in clinical situations.The regulatory mechanisms of immune defense in pulpitis are still being investigated.Osteomodulin(OMD)is a small leucine-rich proteoglycan family member distributed in bones and teeth.It is a bioactive protein that promotes osteogenesis and suppresses the apoptosis of human dental pulp stem cells(hDPSCs).In this study,the role of OMD in pulpitis and the OMD-induced regulatory mechanism were investigated.The OMD expression in normal and inflamed human pulp tissues was detected via immunofluorescence staining.Intriguingly,the OMD expression decreased in the inflammatory infiltration area of pulpitis specimens.The cellular experiments demonstrated that recombined human OMD could resist the detrimental effects of lipopolysaccharide(LPS)-induced inflammation.A conditional Omd knockout mouse model with pulpal inflammation was established.LPS-induced inflammatory impairment significantly increased in conditional Omd knockout mice,whereas OMD administration exhibited a protective effect against pulpitis.Mechanistically,the transcriptome alterations of OMD overexpression showed significant enrichment in the nuclear factor-κB(NF-κB)signaling pathway.Interleukin-1 receptor 1(IL1R1),a vital membrane receptor activating the NF-κB pathway,was significantly downregulated in OMD-overexpressing hDPSCs.Additionally,the interaction between OMD and IL1R1 was verified using co-immunoprecipitation and molecular docking.In vivo,excessive pulpal inflammation in Omd-deficient mice was rescued using an IL1R antagonist.Overall,OMD played a protective role in the inflammatory response via the IL1R1/NF-κB signaling pathway.OMD may optimize the immunomodulatory functions of hDPSCs and can be used for regenerative endodontics.展开更多
Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein ...Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein arginine methyl transferase-6 modifies neuropathic pain and,if so,what the mechanisms of this effect.In this study,protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model,chronic constriction injury model and bone cancer pain model,using immunohistochemistry,western blotting,immunoprecipitation,and label-free proteomic analysis.The results showed that protein arginine methyltransferase-6 mostly co-localized withβ-tubulinⅢin the dorsal root ganglion,and that its expression decreased following spared nerve injury,chronic constriction injury and bone cancer pain.In addition,PRMT6 knockout(Prmt6~(-/-))mice exhibited pain hypersensitivity.Furthermore,the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression.Moreover,when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury,increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn,and the response to mechanical stimuli was enhanced.Mechanistically,protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F.Additionally,protein arginine methyltransfe rase-6-mediated modulation of hete rogeneous nuclear ribonucleoprotein-F expression required amino atids 319 to 388,but not classical H3R2 methylation.These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target fo r the treatment of peripheral neuro pathic pain.展开更多
The activation of the sirtuin1(SIRT1)/nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase 1(HO-1)pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing ...The activation of the sirtuin1(SIRT1)/nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase 1(HO-1)pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing reactive oxygen species(ROS)levels.Clinical trials have demonstrated that Zhongfeng Xingnao Liquid(ZFXN)ameliorates post-stroke cognitive impairment(PSCI).However,the underlying mechanism,particularly whether it involves protecting mitochondria and inhibiting apoptosis through the SIRT1/Nrf2/HO-1 pathway,remains unclear.This study employed an oxygen-glucose deprivation(OGD)cell model using SHSY5Y cells and induced PSCI in rats through modified bilateral carotid artery ligation(2VO).The effects of ZFXN on learning and memory,neuroprotective activity,mitochondrial function,oxidative stress,and the SIRT1/Nrf2/HO-1 pathway were evaluated both in vivo and in vitro.Results indicated that ZFXN significantly increased the B-cell lymphoma 2(Bcl2)/Bcl2-associated X(Bax)ratio,reduced terminal deoxynucleotidyl transferase-mediated d UTP nickend-labeling(TUNEL)+cells,and markedly improved cognition,synaptic plasticity,and neuronal function in the hippocampus and cortex.Furthermore,ZFXN exhibited potent antioxidant activity,evidenced by decreased ROS and malondialdehyde(MDA)content and increased superoxide dismutase(SOD),catalase(CAT),and glutathione(GSH)levels.ZFXN also demonstrated considerable enhancement of mitochondrial membrane potential(MMP),Tom 20 fluorescence intensity,adenosine triphosphate(ATP)and energy charge(EC)levels,and mitochondrial complexⅠandⅢactivity,thereby inhibiting mitochondrial damage.Additionally,ZFXN significantly increased SIRT1 activity and elevated SIRT1,nuclear Nrf2,and HO-1 levels.Notably,these effects were substantially counteracted when SIRT1 was suppressed by the inhibitor EX-527 in vitro.In conclusion,ZFXN alleviates PSCI by activating the SIRT1/Nrf2/HO-1 pathway and preventing mitochondrial damage.展开更多
In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the...In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.展开更多
This study investigates the establishment of scientific links between the People's Republic of China(PRC)and the United Kingdom(UK)in the mid-2Oth century,focusing on the early development of China's nuclear i...This study investigates the establishment of scientific links between the People's Republic of China(PRC)and the United Kingdom(UK)in the mid-2Oth century,focusing on the early development of China's nuclear industry.Sino-British scientific interactions took place across multiple dimensions,involving various institutions and individuals.Around 1949,UK-trained Chinese nuclear scientists returned to China,bringing advanced technological knowledge and extensive practical experience.The PRC regarded the UK as a crucial gateway to overcoming the technological blockade imposed by the United States(and later the Soviet Union)and sought to establish scientific relations with the UK through semi-official and unofficial channels.Specifically,these connections manifested in the interactions between the Chinese Academy of Sciences(CAS)and the Royal Society of London,the guiding role of the Chinese Charge d'Affaires Office in London in facilitating scientific and technological exchanges,and the technology investigations led by the Ministry of Foreign Trade in the name of trade.Additionally,the Sino-British scientific network extended to the international arena,allowing China to engage in nuclear-related global organizations and events.This study highlights the significant British influence on the early development of China's nuclear industry,revealing the extent of its British influence.It argues that China's urgent need for nuclear science and industrial advancement was a key driver of its scientific engagement withthe UK.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
In a series of three papers published in 2024[1-3],physicists in Austria,Germany,and the United States reported the first direct observations with table-top lasers of a new nuclear process,in which the nucleus of a th...In a series of three papers published in 2024[1-3],physicists in Austria,Germany,and the United States reported the first direct observations with table-top lasers of a new nuclear process,in which the nucleus of a thorium atom absorbs a photon and goes into an excited state,then re-emits the photon and returns to its ground state.This“thorescence”phenomenon“is exactly the same process as fluorescence,but it takes place inside the nucleus,”said Ekkehard Peik,professor and head of the department of time and frequency at the Physikalisch-Technische Bundesanstalt(the German national metrology institute)in Braunschweig,Germany.展开更多
Amborella trichopoda(Amborellaceae;hereafter simply Amborella)(Fig.1A)is a shrub endemic to New Caledonia in the Southwest Pacific that represents the sole sister species of all other extant angiosperms(Qiu et al.,199...Amborella trichopoda(Amborellaceae;hereafter simply Amborella)(Fig.1A)is a shrub endemic to New Caledonia in the Southwest Pacific that represents the sole sister species of all other extant angiosperms(Qiu et al.,1999;One Thousand Plant Transcriptomes Initiative,2019).Due to its unique phylogenetic status,it holds tremendous interest for botanists.The nuclear and mitochondrial genomes of Amborella were first published in 2013,providing valuable resources for studies on genome and gene family evolution,phylogenomics,and flower development,despite the fact that the assembly is heavily fragmented(Amborella Genome Project,2013;Rice et al.,2013).In 2024,a haplotype-resolved Amborella genome assembly was published,showing significant improvement in quality and completeness(Carey et al.,2024).展开更多
基金supported by the National Natural Science Foundation of China(Nos.11275048,11775049)the China Jiangsu Provincial Natural Science Foundation(No.BK20131286)
文摘As the high-density nuclear equation of state(EOS) is not very well constrained, we suggest that the structural properties from the finite systems can be used to extract a more accurate constraint. By including the strangeness degrees of freedom, the hyperon or anti-kaon, the finite systems can then have a rather high-density core which is relevant to the nuclear EOS at high densities directly. It is found that the density dependence of the symmetry energy is sensitive to the properties of multi-K hypernuclei, while the high-density EOS of symmetric matter correlates sensitively to the properties of kaonic nuclei.
基金supported by the Natural Science Foundation of China(Nos.11405204 11305205 and 10675123)Special Program for Informatization of Chinese Academy of Sciences(No.XXH12504-1-09)the National Special Program for ITER(No.2014GB1120001)
文摘Accurate and reliable nuclear data libraries are essential for calculation and design of advanced nuclea systems. A 1200 fine group nuclear data library Hybrid Evaluated Nuclear Data Library/Fine Group(HENDL/FG with neutrons of up to 150 Me V has been developed to improve the accuracy of neutronics calculations and anal ysis. Corrections of Doppler, resonance self-shielding, and thermal upscatter effects were done for HENDL/FG Shielding and critical safety benchmarks were performed to test the accuracy and reliability of the library. The dis crepancy between calculated and measured nuclea parameters fell into a reasonable range.
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
基金The Advanced Civil Design and Construction Technology Joint LAB of Nuclear Engineering(Project No.:KY23015).
文摘In nuclear power engineering,the quality requirements for concrete are extremely stringent.Concrete structures must exhibit high durability to withstand the effects of nuclear radiation,chemical corrosion,and environmental changes.In particular,nuclear power projects impose higher design standards and safety requirements regarding concrete density.Traditional manual vibration and visual inspection methods are difficult to ensure the required level of concrete compaction.This paper presents an intelligent vibration technology for concrete in nuclear power engineering to enhance construction quality and efficiency.By integrating intelligent sensors,control systems,and data processing algorithms,the technology enables real-time monitoring and evaluation of the vibration process.Results show that intelligent vibration technology effectively ensures the density and uniformity of concrete in nuclear power engineering,thereby improving structural safety and reliability.
基金supported by the National Natural Science Foundation of China(Nos.12035011,11975167,12175151,12005139,11947123)the Guangdong Major Project of Basic and Applied Basic Research(No.2021B0301030006)the Steady Support Program for Higher Education Institutions of Shenzhen(Nos.20200810163629001,20200817005440001).
文摘The α-nucleus interaction is crucial in the description of α decay. Recently, we developed a pocket-type dynamical doublefolding potential(DDFP) that effectively incorporates both the surface-medium effect and interior Pauli repulsion in α decay [H. Zheng et al., Phys. Rev. C 109, L011301(2024)]. This potential results in a pocket geometry within the nuclear surface region, which is consistent with the α-clustering characteristics predicted by microscopic calculations. In this study, the accuracy of the pocket-type DDFP was validated via systematic calculations of α-decay half-lives and an extended evaluation of the nuclear charge radii of the daughter nuclei. The results demonstrate good agreement with the experimental data for both quantities, thereby confirming the reliability of the DDFP model. Compared with calculations that use α-nucleus interactions derived from conventional double-folding procedures, DDFP employs fewer adjustable parameters to achieve a more accurate description of the charge radii based on the experimental α-decay energies.
基金supported by Special Coordination Funds for Promoting Science and Technology,sponsored by Japan’s Ministry of Education,Culture,Sports,Science and Technology(MEXT).
文摘Herein,we employ the threshold energy neutron analysis(TENA)technique to introduce the world's first active interrogation system to detect special nuclear materials(SNMs),including U-235 and Pu-239.The system utilizes a DD neutron generator based on inertial electrostatic confinement(IEC)to interrogate suspicious objects.To detect secondary neutrons produced during fission reactions induced in SNMs,a tensioned metastable fluid detector(TMFD)is employed.The current status of the system's development is reported in this paper,accompanied by the results from experiments conducted to detect 10 g of highly enriched uranium(HEU).Notably,the experimental findings demonstrate a distinct difference in the count rates of measurements with and without HEU.This difference in count rates surpasses two times the standard deviation,indicating a confidence level of more than 96% for identifying the presence of HEU.The paper presents and extensively discusses the proof-of-principle experimental results,along with the system's planned trajectory.
基金supported by the Army Laboratory Animal Foundation of China,No.SYDW[2020]22(to TC)the Shaanxi Provincial Key R&D Plan General Project of China,No.2022SF-236(to YM)the National Natural Science Foundation of China,No.82202070(to TC)。
文摘A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
文摘Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.
文摘This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.
基金Supported by The Guangdong Basic and Applied Basic Research Foundation,China,No.2024A1515011236.
文摘By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.
基金supported by National Natural Science Foundation of China(grant numbers 82072523 to Zhiyong Hou)Postdoctoral program of Clinical medicine of Hebei Medical University(grant numbers PD2023012 to Sujuan Xu)+2 种基金Excellent postdoctoral research funding project of Hebei Province(grant numbers B2023005011 to Sujuan Xu)The 16th special grant of China Postdoctoral Science Foundation(grant numbers 2023T160182 to Sujuan Xu)Natural Science Foundation of Hebei Province,China(grant numbers H2023206230 to Yingchao Yin,H2024206186 to Sujuan Xu).
文摘The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis.Nuclear receptors(NRs)are now understood to be crucial in bone physiology and pathology.However,the function of the Farnesoid X receptor(FXR),a member of the NR family,in regulating bone homeostasis remains incompletely understood.In this study,in vitro and in vivo models revealed delayed bone development and an osteoporosis phenotype in mice lacking FXR in bone marrow mesenchymal stem cells(BMSCs)and osteoblasts due to impaired osteoblast differentiation.Mechanistically,FXR could stabilize RUNX2 by inhibiting Thoc6-mediated ubiquitination,thereby promoting osteogenic activity in BMSCs.Moreover,activated FXR could directly bind to the Thoc6 promoter,suppressing its expression.The interaction between RUNX2 and Thoc6 was mediated by the Runt domain of RUNX2 and the WD repeat of Thoc6.Additionally,Obeticholic acid(OCA),an orally available FXR agonist,could ameliorate bone loss in an ovariectomy(OVX)-induced osteoporotic mouse model.Taken together,our findings suggest that FXR plays pivotal roles in osteoblast differentiation by regulating RUNX2 stability and that targeting FXR may be a promising therapeutic approach for osteoporosis.
基金supported by the National Natural Science Foundation of China(Nos.12475174 and U2267207)YueLuShan Center Industrial Innovation(No.2024YCII0108)+2 种基金Natural Science Foundation of Hunan Province(No.2022JJ40345)Science and Technology Innovation Project of Hengyang(No.202250045336)the Project of State Key Laboratory of Radiation Medicine and Protection,Soochow University(No.GZK12023031)。
文摘The Monte Carlo(MC)method offers significant advantages in handling complex geometries and physical processes in particle transport problems and has become a widely used approach in reactor physics analysis,radiation shielding design,and medical physics.However,with the rapid advancement of new nuclear energy systems,the Monte Carlo method faces challenges in efficiency,accuracy,and adaptability,limiting its effectiveness in meeting modern design requirements.Overcoming technical obstacles related to high-fidelity coupling,high-resolution computation,and intelligent design is essential for using the Monte Carlo method as a reliable tool in numerical analysis for these new nuclear energy systems.To address these challenges,the Nuclear Energy and Application Laboratory(NEAL)team at the University of South China developed a multifunctional and generalized intelligent code platform called MagicMC,based on the Monte Carlo particle transport method.MagicMC is a developing tool dedicated to nuclear applications,incorporating intelligent methodologies.It consists of two primary components:a basic unit and a functional unit.The basic unit,which functions similarly to a standard Monte Carlo particle transport code,includes seven modules:geometry,source,transport,database,tally,output,and auxiliary.The functional unit builds on the basic unit by adding functional modules to address complex and diverse applications in nuclear analysis.MagicMC introduces a dynamic Monte Carlo particle transport algorithm to address time-space particle transport problems within emerging nuclear energy systems and incorporates a CPU-GPU heterogeneous parallel framework to enable high-efficiency,high-resolution simulations for large-scale computational problems.Anticipating future trends in intelligent design,MagicMC integrates several advanced features,including CAD-based geometry modeling,global variance reduction methods,multi-objective shielding optimization,high-resolution activation analysis,multi-physics coupling,and radiation therapy.In this paper,various numerical benchmarks-spanning reactor transient simulations,material activation analysis,radiation shielding optimization,and medical dosimetry analysis-are presented to validate MagicMC.The numerical results demonstrate MagicMC's efficiency,accuracy,and reliability in these preliminary applications,underscoring its potential to support technological advancements in developing high-fidelity,high-resolution,and high-intelligence MC-based tools for advanced nuclear applications.
基金supported by grants from the National Natural Science Foundation of China (82071104)Science and Technology Commission of Shanghai Municipality (23XD1434200/22Y21901000)+9 种基金Shanghai Hospital Development Center(SHDC12022120)National Clinical Research Center for Oral Diseases (NCRCO2021-omics-07)Shanghai Clinical Research Center for Oral Diseases (19MC1910600)Major and Key Cultivation Projects of Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine (JYZP006)Shanghai’s Top Priority Research Center (2022ZZ01017)CAMS Innovation Fund for Medical Sciences (2019-I2M-5-037)Fundamental research program funding of Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine(JYZZ237)Eastern Talent Plan Leading Project (BJZH2024001)partly supported by the Shanghai Ninth People’s Hospital affiliated with Shanghai Jiao Tong University,School of Medicine(JYJC202223)Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases (14DZ2260300)
文摘Pulpitis is a common infective oral disease in clinical situations.The regulatory mechanisms of immune defense in pulpitis are still being investigated.Osteomodulin(OMD)is a small leucine-rich proteoglycan family member distributed in bones and teeth.It is a bioactive protein that promotes osteogenesis and suppresses the apoptosis of human dental pulp stem cells(hDPSCs).In this study,the role of OMD in pulpitis and the OMD-induced regulatory mechanism were investigated.The OMD expression in normal and inflamed human pulp tissues was detected via immunofluorescence staining.Intriguingly,the OMD expression decreased in the inflammatory infiltration area of pulpitis specimens.The cellular experiments demonstrated that recombined human OMD could resist the detrimental effects of lipopolysaccharide(LPS)-induced inflammation.A conditional Omd knockout mouse model with pulpal inflammation was established.LPS-induced inflammatory impairment significantly increased in conditional Omd knockout mice,whereas OMD administration exhibited a protective effect against pulpitis.Mechanistically,the transcriptome alterations of OMD overexpression showed significant enrichment in the nuclear factor-κB(NF-κB)signaling pathway.Interleukin-1 receptor 1(IL1R1),a vital membrane receptor activating the NF-κB pathway,was significantly downregulated in OMD-overexpressing hDPSCs.Additionally,the interaction between OMD and IL1R1 was verified using co-immunoprecipitation and molecular docking.In vivo,excessive pulpal inflammation in Omd-deficient mice was rescued using an IL1R antagonist.Overall,OMD played a protective role in the inflammatory response via the IL1R1/NF-κB signaling pathway.OMD may optimize the immunomodulatory functions of hDPSCs and can be used for regenerative endodontics.
基金supported by the National Natural Science Foundation of China,Nos.82001178(to LW),81901129(to LH),82001175(to FX)Shanghai Sailing Program,No.20YF1439200(to LW)+1 种基金the Natural Science Foundation of Shanghai,China,No.23ZR1450800(to LH)and the Fundamental Research Funds for the Central Universities,No.YG2023LC15(to ZX)。
文摘Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein arginine methyl transferase-6 modifies neuropathic pain and,if so,what the mechanisms of this effect.In this study,protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model,chronic constriction injury model and bone cancer pain model,using immunohistochemistry,western blotting,immunoprecipitation,and label-free proteomic analysis.The results showed that protein arginine methyltransferase-6 mostly co-localized withβ-tubulinⅢin the dorsal root ganglion,and that its expression decreased following spared nerve injury,chronic constriction injury and bone cancer pain.In addition,PRMT6 knockout(Prmt6~(-/-))mice exhibited pain hypersensitivity.Furthermore,the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression.Moreover,when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury,increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn,and the response to mechanical stimuli was enhanced.Mechanistically,protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F.Additionally,protein arginine methyltransfe rase-6-mediated modulation of hete rogeneous nuclear ribonucleoprotein-F expression required amino atids 319 to 388,but not classical H3R2 methylation.These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target fo r the treatment of peripheral neuro pathic pain.
基金supported by the Science&Technology Department of Sichuan Province(No.2019YFS0040)the Improvement Plan of“Xinglin Scholar”Scientific Research Talent,Chengdu University of Traditional Chinese Medicine(No.XKTD2022002)。
文摘The activation of the sirtuin1(SIRT1)/nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase 1(HO-1)pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing reactive oxygen species(ROS)levels.Clinical trials have demonstrated that Zhongfeng Xingnao Liquid(ZFXN)ameliorates post-stroke cognitive impairment(PSCI).However,the underlying mechanism,particularly whether it involves protecting mitochondria and inhibiting apoptosis through the SIRT1/Nrf2/HO-1 pathway,remains unclear.This study employed an oxygen-glucose deprivation(OGD)cell model using SHSY5Y cells and induced PSCI in rats through modified bilateral carotid artery ligation(2VO).The effects of ZFXN on learning and memory,neuroprotective activity,mitochondrial function,oxidative stress,and the SIRT1/Nrf2/HO-1 pathway were evaluated both in vivo and in vitro.Results indicated that ZFXN significantly increased the B-cell lymphoma 2(Bcl2)/Bcl2-associated X(Bax)ratio,reduced terminal deoxynucleotidyl transferase-mediated d UTP nickend-labeling(TUNEL)+cells,and markedly improved cognition,synaptic plasticity,and neuronal function in the hippocampus and cortex.Furthermore,ZFXN exhibited potent antioxidant activity,evidenced by decreased ROS and malondialdehyde(MDA)content and increased superoxide dismutase(SOD),catalase(CAT),and glutathione(GSH)levels.ZFXN also demonstrated considerable enhancement of mitochondrial membrane potential(MMP),Tom 20 fluorescence intensity,adenosine triphosphate(ATP)and energy charge(EC)levels,and mitochondrial complexⅠandⅢactivity,thereby inhibiting mitochondrial damage.Additionally,ZFXN significantly increased SIRT1 activity and elevated SIRT1,nuclear Nrf2,and HO-1 levels.Notably,these effects were substantially counteracted when SIRT1 was suppressed by the inhibitor EX-527 in vitro.In conclusion,ZFXN alleviates PSCI by activating the SIRT1/Nrf2/HO-1 pathway and preventing mitochondrial damage.
文摘In complex systems,there is a kind of parameters having only a minor impact on the outputs in most cases,but their accurate values are still critical for the operation of systems.In this paper,the authors focus on the identification of these weak influence parameters in the complex systems and propose a identification model based on the parameter recursion.As an application,three parameters of the steam generator are identified,that is,the valve opening,the valve CV value,and the reference water level,in which the valve opening and the reference water level are weak influence parameters under most operating conditions.Numerical simulation results show that,in comparison with the multi-layer perceptron(MLP),the identification error rate is decreased.Actually,the average identification error rate for the valve opening decreases by 0.96%,for the valve CV decreases by 0.002%,and for the reference water level decreases by 12%after one recursion.After two recursions,the average identification error rate for the valve opening decreases by 11.07%,for the valve CV decreases by 2.601%,and for the reference water level decreases by 95.79%.This method can help to improve the control of the steam generator.
文摘This study investigates the establishment of scientific links between the People's Republic of China(PRC)and the United Kingdom(UK)in the mid-2Oth century,focusing on the early development of China's nuclear industry.Sino-British scientific interactions took place across multiple dimensions,involving various institutions and individuals.Around 1949,UK-trained Chinese nuclear scientists returned to China,bringing advanced technological knowledge and extensive practical experience.The PRC regarded the UK as a crucial gateway to overcoming the technological blockade imposed by the United States(and later the Soviet Union)and sought to establish scientific relations with the UK through semi-official and unofficial channels.Specifically,these connections manifested in the interactions between the Chinese Academy of Sciences(CAS)and the Royal Society of London,the guiding role of the Chinese Charge d'Affaires Office in London in facilitating scientific and technological exchanges,and the technology investigations led by the Ministry of Foreign Trade in the name of trade.Additionally,the Sino-British scientific network extended to the international arena,allowing China to engage in nuclear-related global organizations and events.This study highlights the significant British influence on the early development of China's nuclear industry,revealing the extent of its British influence.It argues that China's urgent need for nuclear science and industrial advancement was a key driver of its scientific engagement withthe UK.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
文摘In a series of three papers published in 2024[1-3],physicists in Austria,Germany,and the United States reported the first direct observations with table-top lasers of a new nuclear process,in which the nucleus of a thorium atom absorbs a photon and goes into an excited state,then re-emits the photon and returns to its ground state.This“thorescence”phenomenon“is exactly the same process as fluorescence,but it takes place inside the nucleus,”said Ekkehard Peik,professor and head of the department of time and frequency at the Physikalisch-Technische Bundesanstalt(the German national metrology institute)in Braunschweig,Germany.
基金supported by the National Natural Science Foundation of China(32270217,31970205,31770211)Metasequoia funding of Nanjing Forestry University to YY。
文摘Amborella trichopoda(Amborellaceae;hereafter simply Amborella)(Fig.1A)is a shrub endemic to New Caledonia in the Southwest Pacific that represents the sole sister species of all other extant angiosperms(Qiu et al.,1999;One Thousand Plant Transcriptomes Initiative,2019).Due to its unique phylogenetic status,it holds tremendous interest for botanists.The nuclear and mitochondrial genomes of Amborella were first published in 2013,providing valuable resources for studies on genome and gene family evolution,phylogenomics,and flower development,despite the fact that the assembly is heavily fragmented(Amborella Genome Project,2013;Rice et al.,2013).In 2024,a haplotype-resolved Amborella genome assembly was published,showing significant improvement in quality and completeness(Carey et al.,2024).