The challenge in searching for fundamental symmetry violation.Neutrinoless double-beta(0νββ)decay represents one of the most profound tests of fundamental symmetries in nature.This hypothetical nuclear process,in w...The challenge in searching for fundamental symmetry violation.Neutrinoless double-beta(0νββ)decay represents one of the most profound tests of fundamental symmetries in nature.This hypothetical nuclear process,in which two neutrons simultaneously decay into two protons with the emission of two electrons but no neutrinos,would demonstrate that lepton number is not conserved and confirm that neutrinos are their own antiparticles(Majorana particles).The observation of 0νββdecay would provide crucial insights into the absolute neutrino mass scale and could illuminate the origin of matter-antimatter asymmetry in the universe.展开更多
Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provi...Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics.With rapid scaling-up of quantum processors as well as advances on quantum algorithms,the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention.In this review,we aim to summarize recent efforts on solving nuclear physics with quantum computers.We first discuss a formulation of nuclear physics in the language of quantum computing.In particular,we review how quantum gauge fields(both Abelian and non-Abelian)and their coupling to matter field can be mapped and studied on a quantum computer.We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems,and show their applications for a broad range of problems in nuclear physics,including simulation of lattice gauge field,solving nucleon and nuclear structures,quantum advantage for simulating scattering in quantum field theory,non-equilibrium dynamics,and so on.Finally,a short outlook on future work is given.展开更多
After graduating from the physics department of Qinghua University in 1952, I started working in the development of nuclear detectors (including cloud chambers and scintillometers) under the instruction of Profs. Yang...After graduating from the physics department of Qinghua University in 1952, I started working in the development of nuclear detectors (including cloud chambers and scintillometers) under the instruction of Profs. Yang Chengzhong and Dai Chuanzeng at the CAS Institute of Modern Physics.From 1956 to 1958,I studied at Lebedev’s Institute of Physics under the Soviet Academy展开更多
This article introduces the methodologies and instrumentation for data measurement and propagation at the Back-n white neutron facility of the China Spallation Neutron Source.The Back-n facility employs backscattering...This article introduces the methodologies and instrumentation for data measurement and propagation at the Back-n white neutron facility of the China Spallation Neutron Source.The Back-n facility employs backscattering techniques to generate a broad spectrum of white neutrons.Equipped with advanced detectors such as the light particle detector array and the fission ionization chamber detector,the facility achieves high-precision data acquisition through a general-purpose electronics system.Data were managed and stored in a hierarchical system supported by the National High Energy Physics Science Data Center,ensuring long-term preservation and efficient access.The data from the Back-n experiments significantly contribute to nuclear physics,reactor design,astrophysics,and medical physics,enhancing the understanding of nuclear processes and supporting interdisciplinary research.展开更多
In response to the capabilities presented by the High-Intensity Heavy Ion Accelerator Facility(HIAF) and the Accelerator-Driven Subcritical System(Ci ADS), as well as the proposed Chinese Advanced Nuclear Physics Rese...In response to the capabilities presented by the High-Intensity Heavy Ion Accelerator Facility(HIAF) and the Accelerator-Driven Subcritical System(Ci ADS), as well as the proposed Chinese Advanced Nuclear Physics Research Facility(CNUF), we are assembling a consortium of experts in relevant disciplines, both domestically and internationally,to delineate high-precision physics experiments that leverage the state-of-the-art research environment afforded by CNUF.Our focus encompasses six primary domains of inquiry: hadron physics—including endeavors such as the super eta factory and investigations into light hadron structures;muon physics;neutrino physics;neutron physics;the testing of fundamental symmetries;and the exploration of quantum effects within nuclear physics, along with the utilization of vortex accelerators.We aim to foster a well-rounded portfolio of large, medium, and small-scale projects, thus unlocking new scientific avenues and optimizing the potential of the Huizhou large scientific facility. The aspiration for international leadership in scientific research will be a guiding principle in our strategic planning. This initiative will serve as a foundational reference for the Institute of Modern Physics in its strategic planning and goal-setting, ensuring alignment with its developmental objectives while striving to secure a competitive edge in technological advancement. Our ambition is to engage in substantive research within these realms of high-precision physics, to pursue groundbreaking discoveries, and to stimulate progress in China's nuclear physics landscape, positioning Huizhou as a preeminent global hub for advanced nuclear physics research.展开更多
Machine learning(ML)is becoming a new paradigm for scientific research in various research fields due to its exciting and powerful capability of modeling tools used for big-data processing tasks.In this review,we firs...Machine learning(ML)is becoming a new paradigm for scientific research in various research fields due to its exciting and powerful capability of modeling tools used for big-data processing tasks.In this review,we first briefly introduce the different methodologies used in ML algorithms and techniques.As a snapshot of many applications by ML,some selected applications are presented,especially for low-and intermediate-energy nuclear physics,which include topics on theoretical applications in nuclear structure,nuclear reactions,properties of nuclear matter,and experimental applications in event identification/reconstruction,complex system control,and firmware performance.Finally,we present a summary and outlook on the possible directions of ML use in low-intermediate energy nuclear physics and possible improvements in ML algorithms.展开更多
In this short review, I discuss the sensitivity of the generation of the light and the life-relevant elements such as carbon and oxygen under changes of the parame- ters of the Standard Model pertinent to nuclear phys...In this short review, I discuss the sensitivity of the generation of the light and the life-relevant elements such as carbon and oxygen under changes of the parame- ters of the Standard Model pertinent to nuclear physics. Chiral effective field theory allows for a systematic and precise description of the forces between two, three and four nucleons. In this framework, variations under the light quark masses and the electromagnetic fine-structure constant can also be consistently calculated. Combining chiral nuclear effective field theory with Monte Carlo simulations allows to further calculate the properties of nuclei, in particular of the Hoyle state in carbon, that plays a crucial role in the gener- ation of the life-relevant elements in hot, old stars. The dependence of the triple-alpha process on the fundamental constants of nature is calculated, and some implications for our anthropic view of the Universe are discussed.展开更多
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS is a science periodical focusing on specialized fields with its first issue published in 1977.It is sponsored by the Chinese Physical Society,and supported by the Institute of.H...HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS is a science periodical focusing on specialized fields with its first issue published in 1977.It is sponsored by the Chinese Physical Society,and supported by the Institute of.High Energy Physics and the Institute of Modern Physics,the Chinese Academy of Sciences.It is a monthly journal,distributed both at home and abroad.展开更多
The newly developed software,Nucleus++,is an advanced tool for displaying basic nuclear physics properties from NubAsE and integrating comprehensive mass information for each nuclide from Atomic Mass Evaluation.Additi...The newly developed software,Nucleus++,is an advanced tool for displaying basic nuclear physics properties from NubAsE and integrating comprehensive mass information for each nuclide from Atomic Mass Evaluation.Additionally,it allows users to compare experimental nuclear masses with predictions from different mass models.Building on the success and learning experiences of its predecessor,Nucleus,this enhanced tool introduces improved functionality and compatibility.With its user-friendly interface,Nucleus++was designed as a valuable tool for scholars and practitioners in the field of nuclear science.This article offers an in-depth description of Nucleus++,highlighting its main features and anticipated impacts on nuclear science research.展开更多
High-power laser systems have opened new frontiers in scientifi research and have revolutionized various scientifi fields offering unprecedented capabilities for understanding fundamental physics and allowing unique a...High-power laser systems have opened new frontiers in scientifi research and have revolutionized various scientifi fields offering unprecedented capabilities for understanding fundamental physics and allowing unique applications.This paper details the successful commissioning of the 1 PW experimental area at the Extreme Light Infrastructure–Nuclear Physics(ELI-NP)facility in Romania,using both of the available laser arms.The experimental setup featured a short focal parabolic mirror to accelerate protons through the target normal sheath acceleration mechanism.Detailed experiments were conducted using various metallic and diamond-like carbon targets to investigate the dependence of the proton acceleration on different laser parameters.Furthermore,the paper discusses the critical role of the laser temporal profil in optimizing proton acceleration,supported by hydrodynamic simulations that are correlated with experimental outcomes.The finding underscore the potential of the ELI-NP facility to advance research in laser–plasma physics and contribute significantl to high-energy physics applications.The results of this commissioning establish a strong foundation for experiments by future users.展开更多
To investigate the possible geometric structure of the proton,an improved stringy proton model is constructed beyond the smallest distance approximation and treats the constituent(up and down)quark-initiated gluon tub...To investigate the possible geometric structure of the proton,an improved stringy proton model is constructed beyond the smallest distance approximation and treats the constituent(up and down)quark-initiated gluon tubes separately,where the constituent quarks are connected by gluon tubes which merge at the Fermat point of the quark triangle.The exclusive diffractive vector meson production process in electron-proton deep inelastic scattering is used to test the stringy structure of the proton.We calculate the coherent and incoherent differential cross sections of the exclusive diffractive J/Ψphotoproduction in the framework of Color Glass Condensate.The results show that our calculations are in good agreement with HERA data.Especially,our results give a better description of the HERA data at small t as compared to the ones from the hot spot model where the constituent quarks are independently distributed in the proton.Meanwhile,the radius of the proton resulting from the improved stringy proton model is coincident with the one from fitting to the data from GlueX Collaboration at Jefferson Lab,which indicates that the predictive power of the stringy proton model is significantly improved once it goes beyond the smallest distance approximation and treats the constituent quarks separately,instead of using the same profile for the up and down quarks initiated gluon tubes.Moreover,we assume that the transverse shape of the gluon tube satisfies Gaussian distribution,and explore the distribution width of the individual gluon tubes.We find an interesting result that the up quark-initiated gluon tube seems to have a larger distribution width than the down quarkinitiated gluon tube,which is favored by the HERA data.展开更多
This work demonstrates that once a large number of pion is condensed in a high-energy hadron collision, the gamma-ray spectrum from π0decay takes on a typical broken power-law shape, which has been documented in many...This work demonstrates that once a large number of pion is condensed in a high-energy hadron collision, the gamma-ray spectrum from π0decay takes on a typical broken power-law shape, which has been documented in many astronomical observations, but we have not yet recognized it. We show that this pion condensation is caused by a large number of soft gluons condensed in protons.展开更多
Based on the theory of relativistic superstrong magnetic fields (SMFs), by using the method of Thomas-Fermi-Dirac approximations, we investigate the problem of strong electron screening (SES) in SMFs and the influ...Based on the theory of relativistic superstrong magnetic fields (SMFs), by using the method of Thomas-Fermi-Dirac approximations, we investigate the problem of strong electron screening (SES) in SMFs and the influence of SES on the nuclear reaction of 23Mg (p, Y)24A1. Our calculations show that the nuclear reaction will be markedly effected by the SES in SMFs in the surface of magnetars. Our calculated screening rates can increase two orders of magnitude due to SES in SMFs.展开更多
The origin of boron in the solar system has not yet been clearly understood.We studied the light mass nuclear reactions and neutrino-induced reactions that play important roles in the nucleosynthesis of A=11 nuclei in...The origin of boron in the solar system has not yet been clearly understood.We studied the light mass nuclear reactions and neutrino-induced reactions that play important roles in the nucleosynthesis of A=11 nuclei in the core-collapse supernova(CCSN).We found that the production of A=11 nuclei,particularly^(11)C,is sensitive to the radioactive nuclear reaction^(11)C(α,p)^(14)N among many others.We calculated the upper and lower limits of the^(11)C(α,p)^(14)N rate by taking account of the low energy resonances above the threshold,which have not been included in the previous SN nucleosynthesis calculations.These resonance contributions significantly change the^(11)C abundance,which decays to^(11)B with a half-life of 20.34 m,and affects the resultant isotopic abundance ratio of^(11)B/^(10)B at Mr=3.78-4.4M⊙from which the presolar X grains could form.The^(11)B/^(10)B isotopic ratio measured in X grains can help to understand the origin of solar system boron and constrain still unknown neutrino mass hierarchy if the observational and theoretical uncertainties associated with these abundances are reduced.We emphasize that the further precise experiment of measuring the^(11)C(α,p)^(14)N reaction cross sections at the astrophysically interesting energies of Gamow window 0.23-1.24 MeV,which corresponds to the effective temperature T=0.2-1 GK,could clarify CCSN contribution to the solar^(11)B/^(10)B ratio.展开更多
Nuclear deformations are fundamentally important in nuclear physics.We recently developed a multidimensionally constrained relativistic Hartree-Bogoliubov(MDCRHB)model,in which all multipole deformations respecting th...Nuclear deformations are fundamentally important in nuclear physics.We recently developed a multidimensionally constrained relativistic Hartree-Bogoliubov(MDCRHB)model,in which all multipole deformations respecting the V_(4) symmetry can be considered self-consistently.In this work we extend this model by incorporating the angular momentum projection and parity projection to restore the rotational and parity symmetries broken in the mean-field level.This projected MDCRHB(p-MDCRHB)model enables us to connect certain nuclear spectra to exotic intrinsic shapes such as triangles or tetrahedrons.We present the details of the method and an exemplary calculation for ^(12)C.We develop a triangular moment constraint to generate the triangular configurations consisting of three α clusters arranged as an equilateral triangle.The resulting ^(12)C spectra are consistent with that from a triangular rigid rotor for large separations between the α clusters.We also calculate the B(E2)and B(E3)values for low-lying states and find good agreement with the experiments.展开更多
The pseudorapidity distributions of charged particles produced in Cu-Cu collisions over an energy range from 22.4 GeV to 200 GeV are investigated by using a multi-source ideal gas model which contains systematically t...The pseudorapidity distributions of charged particles produced in Cu-Cu collisions over an energy range from 22.4 GeV to 200 GeV are investigated by using a multi-source ideal gas model which contains systematically the contributions of leading nucleons. It is shown that the calculated results are in agreement with the experimental data and the model is successful in the description of the pseudorapidity distribution of charged particles. The contributions of leading nucleons increase with the increasing impact parameter. The cylinder length (the longitudinal shift of the interacting system) in rapidity space increases with the increasing energy and does not depend on centrality at a given energy.展开更多
By using a suitable set of the surface energy coefficient, nuclear radius, and universal function, the original proximity potential 1977 is modified. The overestimate of the data by 4% reported in the literature is si...By using a suitable set of the surface energy coefficient, nuclear radius, and universal function, the original proximity potential 1977 is modified. The overestimate of the data by 4% reported in the literature is significantly reduced. Our modified proximity potential reproduces the experimental data nicely compared to its older versions.展开更多
Half-lives of proton radioactivity are investigated with a deformed density-dependent model. The single folding potential which is dependent on deformation and orientation is employed to calculate the proton decay wid...Half-lives of proton radioactivity are investigated with a deformed density-dependent model. The single folding potential which is dependent on deformation and orientation is employed to calculate the proton decay width through the deformed potential barrier. In addition, the spectroscopic factor is taken into account in the calculation, which is obtained in the relativistic mean field theory with NL3. The calculated results of semi-spherical nuclei are found to be in good agreement with the experimental data, and the results of well-deformed nuclei are also satisfactory. Moreover, a formula for the spherical proton emission half-life based on the Gamow quantum tunneling theory is presented.展开更多
文摘The challenge in searching for fundamental symmetry violation.Neutrinoless double-beta(0νββ)decay represents one of the most profound tests of fundamental symmetries in nature.This hypothetical nuclear process,in which two neutrons simultaneously decay into two protons with the emission of two electrons but no neutrinos,would demonstrate that lepton number is not conserved and confirm that neutrinos are their own antiparticles(Majorana particles).The observation of 0νββdecay would provide crucial insights into the absolute neutrino mass scale and could illuminate the origin of matter-antimatter asymmetry in the universe.
基金Project supported by the Key-Area Research and Development Program of Guang Dong Province,China(Grant No.2019B030330001)Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030008)+2 种基金the National Natural Science Foundation of China(Grant Nos.12074180,12005065,12022512,and 12035007)the Key Project of Science and Technology of Guangzhou(Grant Nos.201804020055 and 2019050001)the National Key Research and Development Program of China(Grant No.2016YFA0301800)。
文摘Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics.With rapid scaling-up of quantum processors as well as advances on quantum algorithms,the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention.In this review,we aim to summarize recent efforts on solving nuclear physics with quantum computers.We first discuss a formulation of nuclear physics in the language of quantum computing.In particular,we review how quantum gauge fields(both Abelian and non-Abelian)and their coupling to matter field can be mapped and studied on a quantum computer.We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems,and show their applications for a broad range of problems in nuclear physics,including simulation of lattice gauge field,solving nucleon and nuclear structures,quantum advantage for simulating scattering in quantum field theory,non-equilibrium dynamics,and so on.Finally,a short outlook on future work is given.
文摘After graduating from the physics department of Qinghua University in 1952, I started working in the development of nuclear detectors (including cloud chambers and scintillometers) under the instruction of Profs. Yang Chengzhong and Dai Chuanzeng at the CAS Institute of Modern Physics.From 1956 to 1958,I studied at Lebedev’s Institute of Physics under the Soviet Academy
基金supported by the National Key Research and Development Plan(No.2023YFA1606602)。
文摘This article introduces the methodologies and instrumentation for data measurement and propagation at the Back-n white neutron facility of the China Spallation Neutron Source.The Back-n facility employs backscattering techniques to generate a broad spectrum of white neutrons.Equipped with advanced detectors such as the light particle detector array and the fission ionization chamber detector,the facility achieves high-precision data acquisition through a general-purpose electronics system.Data were managed and stored in a hierarchical system supported by the National High Energy Physics Science Data Center,ensuring long-term preservation and efficient access.The data from the Back-n experiments significantly contribute to nuclear physics,reactor design,astrophysics,and medical physics,enhancing the understanding of nuclear processes and supporting interdisciplinary research.
基金supported by the National Natural Science Foundation of China (Grant No.12075326)the Guangdong Basic and Applied Basic Research Foundation (Grant No.2025A1515010669)+2 种基金the Natural Science Foundation of Guangzhou (Grant No.2024A04J6243)the Fundamental Research Funds for the Central Universities in Sun Yat-sen University (No.23xkjc017)the Innovation Training Program for bachelor students in Sun Yat-sen University。
文摘In response to the capabilities presented by the High-Intensity Heavy Ion Accelerator Facility(HIAF) and the Accelerator-Driven Subcritical System(Ci ADS), as well as the proposed Chinese Advanced Nuclear Physics Research Facility(CNUF), we are assembling a consortium of experts in relevant disciplines, both domestically and internationally,to delineate high-precision physics experiments that leverage the state-of-the-art research environment afforded by CNUF.Our focus encompasses six primary domains of inquiry: hadron physics—including endeavors such as the super eta factory and investigations into light hadron structures;muon physics;neutrino physics;neutron physics;the testing of fundamental symmetries;and the exploration of quantum effects within nuclear physics, along with the utilization of vortex accelerators.We aim to foster a well-rounded portfolio of large, medium, and small-scale projects, thus unlocking new scientific avenues and optimizing the potential of the Huizhou large scientific facility. The aspiration for international leadership in scientific research will be a guiding principle in our strategic planning. This initiative will serve as a foundational reference for the Institute of Modern Physics in its strategic planning and goal-setting, ensuring alignment with its developmental objectives while striving to secure a competitive edge in technological advancement. Our ambition is to engage in substantive research within these realms of high-precision physics, to pursue groundbreaking discoveries, and to stimulate progress in China's nuclear physics landscape, positioning Huizhou as a preeminent global hub for advanced nuclear physics research.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875070,11875323,12275359,11875125,12147219,U2032145,11705163,11790320,11790323,11790325,11975032,11835001,11935001,11890710,12147101,11835002,11705031,and 11961141003)the National Key R&D Program of China(Grant Nos.2018YFA0404404,2018YFA0404403,and 2020YFE0202001)+3 种基金the Continuous Basic Scientific Research Project(Grant No.WDJC-2019-13)the funding of China Institute of Atomic Energy(Grant No.YZ222407001301)the Leading Innovation Project of the China National Nuclear Corporation(Grant Nos.LC192209000701,and LC202309000201)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030008)。
文摘Machine learning(ML)is becoming a new paradigm for scientific research in various research fields due to its exciting and powerful capability of modeling tools used for big-data processing tasks.In this review,we first briefly introduce the different methodologies used in ML algorithms and techniques.As a snapshot of many applications by ML,some selected applications are presented,especially for low-and intermediate-energy nuclear physics,which include topics on theoretical applications in nuclear structure,nuclear reactions,properties of nuclear matter,and experimental applications in event identification/reconstruction,complex system control,and firmware performance.Finally,we present a summary and outlook on the possible directions of ML use in low-intermediate energy nuclear physics and possible improvements in ML algorithms.
基金supported in part by DFG and NSFC (Sino-German CRC 110)Helmholtz Association (contract VHVI-417)+2 种基金BMBF (grant 05P12PDFTE)the EU (Hadron Physics3 project)LENPIC (DEC-2103/10/M/ST2/00420)
文摘In this short review, I discuss the sensitivity of the generation of the light and the life-relevant elements such as carbon and oxygen under changes of the parame- ters of the Standard Model pertinent to nuclear physics. Chiral effective field theory allows for a systematic and precise description of the forces between two, three and four nucleons. In this framework, variations under the light quark masses and the electromagnetic fine-structure constant can also be consistently calculated. Combining chiral nuclear effective field theory with Monte Carlo simulations allows to further calculate the properties of nuclei, in particular of the Hoyle state in carbon, that plays a crucial role in the gener- ation of the life-relevant elements in hot, old stars. The dependence of the triple-alpha process on the fundamental constants of nature is calculated, and some implications for our anthropic view of the Universe are discussed.
文摘HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS is a science periodical focusing on specialized fields with its first issue published in 1977.It is sponsored by the Chinese Physical Society,and supported by the Institute of.High Energy Physics and the Institute of Modern Physics,the Chinese Academy of Sciences.It is a monthly journal,distributed both at home and abroad.
基金supported in part by the National Key R&D Program of China(No.2021YFA1601500)CAS Project for Young Scientists in Basic Research(No.YSBR-002)+5 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB34000000)the Regional Development Youth Program of the Chinese Academy of Sciences(People’s Character[2023]No.15)Argonne National Laboratory was performed with the support of the US Department of EnergyOffice of Nuclear Physicsunder Contract No.DE-AC02-06CH11357support of France's IN2P3。
文摘The newly developed software,Nucleus++,is an advanced tool for displaying basic nuclear physics properties from NubAsE and integrating comprehensive mass information for each nuclide from Atomic Mass Evaluation.Additionally,it allows users to compare experimental nuclear masses with predictions from different mass models.Building on the success and learning experiences of its predecessor,Nucleus,this enhanced tool introduces improved functionality and compatibility.With its user-friendly interface,Nucleus++was designed as a valuable tool for scholars and practitioners in the field of nuclear science.This article offers an in-depth description of Nucleus++,highlighting its main features and anticipated impacts on nuclear science research.
基金supported by the Extreme Light Infrastructure–Nuclear Physics(ELI-NP)PhaseⅡa project co-finance by the Romanian Government and the European Union through the European Regional Development Fund,by the Romanian Ministry of Education and Research CNCS-UEFISCDI(Project No.PN-ⅡIP4-IDPCCF-2016-0164)+1 种基金Nucleu Projects(Grant No.PN 23210105 and 19060105)supports ELI-NP through IOSIN funds as a Facility of National Interest。
文摘High-power laser systems have opened new frontiers in scientifi research and have revolutionized various scientifi fields offering unprecedented capabilities for understanding fundamental physics and allowing unique applications.This paper details the successful commissioning of the 1 PW experimental area at the Extreme Light Infrastructure–Nuclear Physics(ELI-NP)facility in Romania,using both of the available laser arms.The experimental setup featured a short focal parabolic mirror to accelerate protons through the target normal sheath acceleration mechanism.Detailed experiments were conducted using various metallic and diamond-like carbon targets to investigate the dependence of the proton acceleration on different laser parameters.Furthermore,the paper discusses the critical role of the laser temporal profil in optimizing proton acceleration,supported by hydrodynamic simulations that are correlated with experimental outcomes.The finding underscore the potential of the ELI-NP facility to advance research in laser–plasma physics and contribute significantl to high-energy physics applications.The results of this commissioning establish a strong foundation for experiments by future users.
基金supported by the National Natural Science Foundation of China under Grant No.12165004 and and Key Grant No.12061141008the Basic and Applied Basic Research Project of Guangzhou Science and Technology Bureau under Grant No.202201011324+1 种基金the Education Department of Guizhou Province under Grant No.QJJ[2022]016the National Key Research and Development Program of China under Grant Nos.2024YFA1610800 and 2022YFA1602103。
文摘To investigate the possible geometric structure of the proton,an improved stringy proton model is constructed beyond the smallest distance approximation and treats the constituent(up and down)quark-initiated gluon tubes separately,where the constituent quarks are connected by gluon tubes which merge at the Fermat point of the quark triangle.The exclusive diffractive vector meson production process in electron-proton deep inelastic scattering is used to test the stringy structure of the proton.We calculate the coherent and incoherent differential cross sections of the exclusive diffractive J/Ψphotoproduction in the framework of Color Glass Condensate.The results show that our calculations are in good agreement with HERA data.Especially,our results give a better description of the HERA data at small t as compared to the ones from the hot spot model where the constituent quarks are independently distributed in the proton.Meanwhile,the radius of the proton resulting from the improved stringy proton model is coincident with the one from fitting to the data from GlueX Collaboration at Jefferson Lab,which indicates that the predictive power of the stringy proton model is significantly improved once it goes beyond the smallest distance approximation and treats the constituent quarks separately,instead of using the same profile for the up and down quarks initiated gluon tubes.Moreover,we assume that the transverse shape of the gluon tube satisfies Gaussian distribution,and explore the distribution width of the individual gluon tubes.We find an interesting result that the up quark-initiated gluon tube seems to have a larger distribution width than the down quarkinitiated gluon tube,which is favored by the HERA data.
基金partly supported by the National Key R&D Program of China (Grant No. 2023YFB3001502)the National Natural Science of China (Grant No. 12373002)。
文摘This work demonstrates that once a large number of pion is condensed in a high-energy hadron collision, the gamma-ray spectrum from π0decay takes on a typical broken power-law shape, which has been documented in many astronomical observations, but we have not yet recognized it. We show that this pion condensation is caused by a large number of soft gluons condensed in protons.
基金supported in part by the National Natural Science Foundation of China through grant No. 11565020the Natural Science Foundation of Hainan province under grant No. 114012the Undergraduate Innovation Program of Hainan province under grant No. 20130139
文摘Based on the theory of relativistic superstrong magnetic fields (SMFs), by using the method of Thomas-Fermi-Dirac approximations, we investigate the problem of strong electron screening (SES) in SMFs and the influence of SES on the nuclear reaction of 23Mg (p, Y)24A1. Our calculations show that the nuclear reaction will be markedly effected by the SES in SMFs in the surface of magnetars. Our calculated screening rates can increase two orders of magnitude due to SES in SMFs.
基金under the support of CSC scholarship from the Ministry of Education of China during his stay at the National Astronomical Observatory of Japan(NAOJ)partly supported by the National Key R&D Program of China(2022YFA1602401)+1 种基金the National Natural Science Foundation of China(12335009,12435010)supported by JSPS KAKENHI(19K03883,23H01181,23K25877)from the Ministry of Education,Culture,Sports,Science and Technology(MEXT)of Japan。
文摘The origin of boron in the solar system has not yet been clearly understood.We studied the light mass nuclear reactions and neutrino-induced reactions that play important roles in the nucleosynthesis of A=11 nuclei in the core-collapse supernova(CCSN).We found that the production of A=11 nuclei,particularly^(11)C,is sensitive to the radioactive nuclear reaction^(11)C(α,p)^(14)N among many others.We calculated the upper and lower limits of the^(11)C(α,p)^(14)N rate by taking account of the low energy resonances above the threshold,which have not been included in the previous SN nucleosynthesis calculations.These resonance contributions significantly change the^(11)C abundance,which decays to^(11)B with a half-life of 20.34 m,and affects the resultant isotopic abundance ratio of^(11)B/^(10)B at Mr=3.78-4.4M⊙from which the presolar X grains could form.The^(11)B/^(10)B isotopic ratio measured in X grains can help to understand the origin of solar system boron and constrain still unknown neutrino mass hierarchy if the observational and theoretical uncertainties associated with these abundances are reduced.We emphasize that the further precise experiment of measuring the^(11)C(α,p)^(14)N reaction cross sections at the astrophysically interesting energies of Gamow window 0.23-1.24 MeV,which corresponds to the effective temperature T=0.2-1 GK,could clarify CCSN contribution to the solar^(11)B/^(10)B ratio.
基金This work has been supported by NSAF(Grant No.U1930403)the National Key R&D Program of China(Grant No.2018YFA0404402)+2 种基金the National Natural Science Foundation of China(Grant No.11525524,No.12070131001,No.12047503,and No.11961141004)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDB-SSWSYS013)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB34010000 and No.XDPB15).
文摘Nuclear deformations are fundamentally important in nuclear physics.We recently developed a multidimensionally constrained relativistic Hartree-Bogoliubov(MDCRHB)model,in which all multipole deformations respecting the V_(4) symmetry can be considered self-consistently.In this work we extend this model by incorporating the angular momentum projection and parity projection to restore the rotational and parity symmetries broken in the mean-field level.This projected MDCRHB(p-MDCRHB)model enables us to connect certain nuclear spectra to exotic intrinsic shapes such as triangles or tetrahedrons.We present the details of the method and an exemplary calculation for ^(12)C.We develop a triangular moment constraint to generate the triangular configurations consisting of three α clusters arranged as an equilateral triangle.The resulting ^(12)C spectra are consistent with that from a triangular rigid rotor for large separations between the α clusters.We also calculate the B(E2)and B(E3)values for low-lying states and find good agreement with the experiments.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10975095 and 10675077, the Shanxi Provincial Natural Science Foundation under Grant No 2007011005, and the Shanxi Provincial Foundation for Returned Overseas Scholars under Grant No[2007]13.
文摘The pseudorapidity distributions of charged particles produced in Cu-Cu collisions over an energy range from 22.4 GeV to 200 GeV are investigated by using a multi-source ideal gas model which contains systematically the contributions of leading nucleons. It is shown that the calculated results are in agreement with the experimental data and the model is successful in the description of the pseudorapidity distribution of charged particles. The contributions of leading nucleons increase with the increasing impact parameter. The cylinder length (the longitudinal shift of the interacting system) in rapidity space increases with the increasing energy and does not depend on centrality at a given energy.
文摘By using a suitable set of the surface energy coefficient, nuclear radius, and universal function, the original proximity potential 1977 is modified. The overestimate of the data by 4% reported in the literature is significantly reduced. Our modified proximity potential reproduces the experimental data nicely compared to its older versions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10535010, 10675090, 10775068, 10735010 and 1095072, the National Basic Research Program of China under Grant Nos 2007CB815004 and 2010CB327803, Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2-SW-N02, and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No 20070284016.
文摘Half-lives of proton radioactivity are investigated with a deformed density-dependent model. The single folding potential which is dependent on deformation and orientation is employed to calculate the proton decay width through the deformed potential barrier. In addition, the spectroscopic factor is taken into account in the calculation, which is obtained in the relativistic mean field theory with NL3. The calculated results of semi-spherical nuclei are found to be in good agreement with the experimental data, and the results of well-deformed nuclei are also satisfactory. Moreover, a formula for the spherical proton emission half-life based on the Gamow quantum tunneling theory is presented.