Banded Iron Formations (BIFs) were formed by contemporaneous events of active sediments supply and the venting of a hydrothermal fluid source at the Mid-Ocean-Ridge. BIFs within the Ntem Complex at the northern edge o...Banded Iron Formations (BIFs) were formed by contemporaneous events of active sediments supply and the venting of a hydrothermal fluid source at the Mid-Ocean-Ridge. BIFs within the Ntem Complex at the northern edge of the Congo Craton are intercalated with metasandstones and siltstones. SHRIMP U-Pb analysis on detrital zircons obtained from these metasediments gave variable ages from over 3000 Ma to 1000 Ma with the maximum age of deposition clustered around 1200 Ma and the peak of deposition at 1800 Ma. This age range suggested that the sub-basin was opened sometime in the Archean and remained active up till the Neoproterozoic. Zircons with Archean ages have a provenance linked to the charnockitic suite and the high-K granites within the Ntem Complex. The Paleoproterozoic ages are attributed to clastic inputs from the neigbouring Nyong Series west of the Ntem Complex. Also the peak of deposition in the Proterozoic could probably be explained by the globally recognized intense crust-forming processes in the Early Proterozoic time. The provenance of the younger Neoproterozoic ages is tied to various lithologies within the northern mobile belts of the Adamawa-Yade massifs and correlates with Neoproterozoic sedimentation ages in the Yaoundé, Lom and Poli series. The Neoproterozoic ages obtained are comparable to those obtained from metasediments of the Amazonian Craton and provide evidence of Pre-Gondwana assemblage of the Congo and the S?o Francisco Cratons.展开更多
A semi-regional study was carried out in the Yaounde-Sangmelima area, a densely vegetated tropical region of southern Cameroon located in the Central Africa Fold Belt (CAFB)/Congo Craton (CC) transition zone. Towards ...A semi-regional study was carried out in the Yaounde-Sangmelima area, a densely vegetated tropical region of southern Cameroon located in the Central Africa Fold Belt (CAFB)/Congo Craton (CC) transition zone. Towards structural lineaments and predictive hydrothermal porphyry deposits mapping, an integrated analysis of Landsat-8 OLI data, aeromagnetic, geological and mineral indices maps was performed. The Remote sensing using False colour composite images involving bands combinations and Crosta method (features oriented principal components analysis) enabled the mapping of the gneisses and schists domains without a clear differentiation between the Yaounde and Mbalmayo schists;despite the reflectance anomalies evidenced NW of Akonolinga, hydrothermal alterations in the study area failed to be detected. Besides, aeromagnetics depicted a moderately fractured northern zone (the CAFB) contrasting with a high densely fractured zone (the CC, known as Ntem complex). The Ntem complex displays signatures of a meta-igneous, an intrusive complex, greenstone relics south of Sangmelima and hydrothermal activity. Indeed, CET porphyry analysis tool detected many porphyry centres. In general, the study revealed many lineaments including contacts, fractures faults zones and strike-slips. The major aeromagnetics structures are SW-NE to WSW-ENE and WNW-ESE to NW-SE while those from Landsat-8 are NE-SW, WNW-ESE, NW-SE, WSW-ENE and NW-ESE to NNW-SSE. Together, these structures depict trans-compressions or trans-tensions corresponding to a broad NE-SW strike-slips channel that affect both the CAFB and the Ntem Complex, and they control the intrusions thus confirming a pervasive hydrothermal activity within the Ntem Complex. The proximity or coincidence of these porphyry centres with some mapped Iron-Gold affiliated mineral indices and porphyry granites indicate the possible occurrence of many hydrothermal ore deposits. These results show the high probability for the Ntem complex to host porphyry deposits so they may serve to boost mineral exploration in the Yaounde-Sangmelima region and in the entire southern Cameroon as well.展开更多
The Endengue Banded Iron Formation (BIF) is located in the northwestern edge of the Congo craton in Cameroon. Here<span style="font-family:Verdana;">,</span><span style="font-family:Verda...The Endengue Banded Iron Formation (BIF) is located in the northwestern edge of the Congo craton in Cameroon. Here<span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> we report geochemical data of trace and rare earth elements (REE) of the Endengue BIF samples from the Archean Ntem complex and investigate their environmental setting. Two types of BIF occur at Endengue area, both containing minimal contamination from terrestrial material. Total REE (</span><span style="line-height:99%;font-family:Verdana;">Σ</span><span style="font-family:Verdana;">REE) contents in the Type 1 BIF are extremely low, ranging from 0.34 to 1.83 ppm, similarly to pure chemical sediments while Type 2 BIF displays</span><span style="font-family:;" "=""> </span><span style="line-height:99%;font-family:Verdana;">Σ</span><span style="font-family:Verdana;">REE contents ranging from 2.98 to 24.26 ppm. The PAAS-normalized REE</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">+</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Y patterns of the two BIF types display LREE enrichment relative to HREE and weak positive Eu anomaly, most likely suggesting that the source of iron and siliceous of the Endengue BIFs is mainly from the contribution of low-temperature hydrothermal alteration of the crust. Type 1 BIF shows very low Nd content (<1 ppm) with positive correlation between Nd and Ce/Ce</span><span style="font-family:Verdana;">*</span><span style="font-family:Verdana;"> and positive Ce anomalies which suggests suboxic or anoxic seawater similar to the depositional environment of Elom BIF in Archean Ntem complex. In contrast, Type 2 BIF displays low to moderate Nd contents (1 and 100 ppm with the exception of sample LBR65) with negative correlation between Nd and Ce/Ce</span><span style="font-family:Verdana;">*</span><span style="font-family:Verdana;"> and negative Ce anomalies. These features indicate precipatation of Type 2 BIF from oxic iron-rich solution that changed to oxidized surface by rapid precipitation of the hydrothermal Fe. The Endengue BIFs were deposited in the continental margin ocean in presence of low-temperature hydrothermal fluids mixed with seawater, similar to Paleoproterozoic Kpwa</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Atog Boga BIFs within the Nyong group and other Paleoproterozoic Superior</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">type BIFs worldwide.</span>展开更多
文摘Banded Iron Formations (BIFs) were formed by contemporaneous events of active sediments supply and the venting of a hydrothermal fluid source at the Mid-Ocean-Ridge. BIFs within the Ntem Complex at the northern edge of the Congo Craton are intercalated with metasandstones and siltstones. SHRIMP U-Pb analysis on detrital zircons obtained from these metasediments gave variable ages from over 3000 Ma to 1000 Ma with the maximum age of deposition clustered around 1200 Ma and the peak of deposition at 1800 Ma. This age range suggested that the sub-basin was opened sometime in the Archean and remained active up till the Neoproterozoic. Zircons with Archean ages have a provenance linked to the charnockitic suite and the high-K granites within the Ntem Complex. The Paleoproterozoic ages are attributed to clastic inputs from the neigbouring Nyong Series west of the Ntem Complex. Also the peak of deposition in the Proterozoic could probably be explained by the globally recognized intense crust-forming processes in the Early Proterozoic time. The provenance of the younger Neoproterozoic ages is tied to various lithologies within the northern mobile belts of the Adamawa-Yade massifs and correlates with Neoproterozoic sedimentation ages in the Yaoundé, Lom and Poli series. The Neoproterozoic ages obtained are comparable to those obtained from metasediments of the Amazonian Craton and provide evidence of Pre-Gondwana assemblage of the Congo and the S?o Francisco Cratons.
文摘A semi-regional study was carried out in the Yaounde-Sangmelima area, a densely vegetated tropical region of southern Cameroon located in the Central Africa Fold Belt (CAFB)/Congo Craton (CC) transition zone. Towards structural lineaments and predictive hydrothermal porphyry deposits mapping, an integrated analysis of Landsat-8 OLI data, aeromagnetic, geological and mineral indices maps was performed. The Remote sensing using False colour composite images involving bands combinations and Crosta method (features oriented principal components analysis) enabled the mapping of the gneisses and schists domains without a clear differentiation between the Yaounde and Mbalmayo schists;despite the reflectance anomalies evidenced NW of Akonolinga, hydrothermal alterations in the study area failed to be detected. Besides, aeromagnetics depicted a moderately fractured northern zone (the CAFB) contrasting with a high densely fractured zone (the CC, known as Ntem complex). The Ntem complex displays signatures of a meta-igneous, an intrusive complex, greenstone relics south of Sangmelima and hydrothermal activity. Indeed, CET porphyry analysis tool detected many porphyry centres. In general, the study revealed many lineaments including contacts, fractures faults zones and strike-slips. The major aeromagnetics structures are SW-NE to WSW-ENE and WNW-ESE to NW-SE while those from Landsat-8 are NE-SW, WNW-ESE, NW-SE, WSW-ENE and NW-ESE to NNW-SSE. Together, these structures depict trans-compressions or trans-tensions corresponding to a broad NE-SW strike-slips channel that affect both the CAFB and the Ntem Complex, and they control the intrusions thus confirming a pervasive hydrothermal activity within the Ntem Complex. The proximity or coincidence of these porphyry centres with some mapped Iron-Gold affiliated mineral indices and porphyry granites indicate the possible occurrence of many hydrothermal ore deposits. These results show the high probability for the Ntem complex to host porphyry deposits so they may serve to boost mineral exploration in the Yaounde-Sangmelima region and in the entire southern Cameroon as well.
文摘The Endengue Banded Iron Formation (BIF) is located in the northwestern edge of the Congo craton in Cameroon. Here<span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> we report geochemical data of trace and rare earth elements (REE) of the Endengue BIF samples from the Archean Ntem complex and investigate their environmental setting. Two types of BIF occur at Endengue area, both containing minimal contamination from terrestrial material. Total REE (</span><span style="line-height:99%;font-family:Verdana;">Σ</span><span style="font-family:Verdana;">REE) contents in the Type 1 BIF are extremely low, ranging from 0.34 to 1.83 ppm, similarly to pure chemical sediments while Type 2 BIF displays</span><span style="font-family:;" "=""> </span><span style="line-height:99%;font-family:Verdana;">Σ</span><span style="font-family:Verdana;">REE contents ranging from 2.98 to 24.26 ppm. The PAAS-normalized REE</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">+</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Y patterns of the two BIF types display LREE enrichment relative to HREE and weak positive Eu anomaly, most likely suggesting that the source of iron and siliceous of the Endengue BIFs is mainly from the contribution of low-temperature hydrothermal alteration of the crust. Type 1 BIF shows very low Nd content (<1 ppm) with positive correlation between Nd and Ce/Ce</span><span style="font-family:Verdana;">*</span><span style="font-family:Verdana;"> and positive Ce anomalies which suggests suboxic or anoxic seawater similar to the depositional environment of Elom BIF in Archean Ntem complex. In contrast, Type 2 BIF displays low to moderate Nd contents (1 and 100 ppm with the exception of sample LBR65) with negative correlation between Nd and Ce/Ce</span><span style="font-family:Verdana;">*</span><span style="font-family:Verdana;"> and negative Ce anomalies. These features indicate precipatation of Type 2 BIF from oxic iron-rich solution that changed to oxidized surface by rapid precipitation of the hydrothermal Fe. The Endengue BIFs were deposited in the continental margin ocean in presence of low-temperature hydrothermal fluids mixed with seawater, similar to Paleoproterozoic Kpwa</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Atog Boga BIFs within the Nyong group and other Paleoproterozoic Superior</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">type BIFs worldwide.</span>