Global framework for nature management requires identifying areas of high priority for biodiversity conservation and restoration.The unique environments of Qinghai-Xizang Plateau(QXP) provide irreplaceable habitats fo...Global framework for nature management requires identifying areas of high priority for biodiversity conservation and restoration.The unique environments of Qinghai-Xizang Plateau(QXP) provide irreplaceable habitats for biodiversity which is prominent under future climate change.Despite the recent increase in research interest on conservation priorities,there is a lack of comprehensive and targeted protection strategies for pandemic species under climate change.Here,we compiled an exhaustive dataset with the variables of extinction risk and occurrence records of ectothermic lizards to investigate the conservation priorities in the QXP.We assessed the conservation status of the QXP lizards and identified the priority protected areas within the QXP under future climate scenarios using phylogenetic generalized least squares and ensemble species distribution models.Our analyses suggested nine lizard species to be prioritized for protection,with the most critical priority species being Dopasia gracilis,D.harti,and Phrynocephalus putjatai.Moreover,the priority protected areas covered~4.7%area of the QXP,mostly in the southern QXP and southeastern Hengduan Mountains.Protecting these regions would achieve a conservation effectiveness of≥95%for species richness,phylogenetic and functionaldiversity under climate change.Our findings provide realistic guidance for improving the conservation effectiveness of specific-lizard and-regions in the QXP under climate change.Our“bottom-up”approach could help the conservation efforts of other regions and species as an alternative to“top-down”global maps.展开更多
Central Asia(CA)faces escalating threats from increasing temperature,glacier retreat,biodiversity loss,unsustainable water use,terminal lake shrinkage,and soil salinization,all of which challenge the balance between e...Central Asia(CA)faces escalating threats from increasing temperature,glacier retreat,biodiversity loss,unsustainable water use,terminal lake shrinkage,and soil salinization,all of which challenge the balance between ecological integrity and socio-economic development essential for achieving Sustainable Development Goals.However,a comprehensive understanding of priority areas from a multi-dimensional perspective is lacking,hindering effective conservation and development strategies.To address this,we developed a comprehensive assessment framework with a tailored indicator system,enabling a spatial evaluation of CA’s priority areas by integrating biodiversity,ecosystem services(ESs),and human activities.Combining zonation and geographical detectors,this approach facilitates spatial prioritization and examines ecological and socio-economic heterogeneity.Our findings reveal a heterogeneous distribution of priority areas across CA,with significant concentrations in eastern mountainous regions,river valleys,and oasis agricultural lands.We identified 184 key districts crucial for ecological and societal sustainability.Attribution analysis shows that natural factors like soil types,precipitation,and evapotranspiration significantly shape these areas,influencing human activities and the distribution of biodiversity and ESs.Multi-dimensional analysis indicates existing protected areas cover only 15%of the top 30%priority areas,revealing substantial conservation gaps.Additionally,a 38%overlap between ESs and human activities,along with 63.25%congruence in integrated areas,underscores significant human impacts on ecological systems and their dependency on ESs.Given CA’s limited resources,it is crucial to implement measures that strengthen conservation efforts,align ecological preservation with socio-economic demands,and enhance resource efficiency through sustainable integrated land and water resource management.展开更多
Vegetation restoration is a critical strategy for mitigating debris flow hazards by stabilizing slopes and modifying hydrological processes.Effective planning of priority restoration areas is particularly essential in...Vegetation restoration is a critical strategy for mitigating debris flow hazards by stabilizing slopes and modifying hydrological processes.Effective planning of priority restoration areas is particularly essential in dry-hot valley regions,where extreme hydrothermal conditions pose significant challenges.This study presents a novel framework that integrates microclimatic variables,such as temperature lapse rates,to enhance the spatial precision of revegetation efforts.The Reshuihe watershed in Southwest China,a representative dry-hot valley,was chosen as the study area.By analyzing hourly temperature and rainfall across an elevation gradient,a quadratic relationship between temperature lapse rates and weak rainfall events was identified,underscoring the role of microclimatic processes in influencing rainfall distribution and plant-available water.Rainfall peaks were observed when the temperature lapse rate was approximately 4.5°C/km.This relationship was incorporated into a cost-based restoration framework using the Marxan model,optimizing the spatial allocation of priority areas for revegetation.Results demonstrated that integrating microclimatic variables significantly improved the effectiveness of revegetation strategies,particularly for reducing debris flow risks.The lowest restoration costs were observed between elevations of 3200 m and 3300 m,where strong correlations between temperature lapse rates and rainfall were recorded.Priority restoration areas covered 41 km^(2),targeting zones with high debris flow risks.These findings highlight the value of incorporating microclimatic data into revegetation planning,enabling cost-effective and ecologically sustainable hazard mitigation in regions vulnerable to hydrological hazards.展开更多
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th...Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.展开更多
Shape irregularity,a sub-factor of parcel fragmentation is a problem that hinders sustainable agriculture and is solved using land consolidation projects.Determination of the parcel shape degree contributes significan...Shape irregularity,a sub-factor of parcel fragmentation is a problem that hinders sustainable agriculture and is solved using land consolidation projects.Determination of the parcel shape degree contributes significantly to spatial prioritization where there is also a high probability of achieving positive effects of consolidation projects.This study aims to determine the shape degree of the agricultural parcels both at singular and rural county scales in Tekirdag Province,Turkey in 2020 by combining the parcel shape index(PSI) with the minimum bounding geometry index(MBG) to improve parcel scores.Hot-spot zones of the highly irregular and near optimum parcels were also determined using Getis-Ord G_(i)^(*) statistic.The parcel degrees were classified into four categories,namely highly irregular,irregular,regular and near optimum.The obtained unweighted scores of the parameters exhibit deviations from the expected values.After weighting by pairwise comparison,the values approached ideal scores.Among 346 740 parcels,53% were highly irregular and irregular and 47% were regular and near optimum shapes after weighting whereas these were 70% and 30%,respectively before weighting.The average parcel degree of 63 rural counties was regular while the average parcel degree of the remaining 264 rural counties was irregular.The combined use of PSI and MBG index improved the correctness of the parcel shape score.It could be suggested to use as a tool in land consolidation prioritization.展开更多
Introduction: Infertilityaffects one in six couples, and it is an important public health issue largely due to thepervasive effects on the emotional and psychological wellbeing of affected couples. In many developing ...Introduction: Infertilityaffects one in six couples, and it is an important public health issue largely due to thepervasive effects on the emotional and psychological wellbeing of affected couples. In many developing nations emphasis is placed on childbirth and inability to fulfill this role can be very distressing. There is an unmet need for assisted reproductive technology (ART) in many developing countries and where facilities exist, they are mostly privately owned, expensive and concentrated in urban areas. To bridge this gap, public fertility clinics have been established to provide subsidized care. Evaluating the characteristics and peculiarities of clientele presenting at these public facilities will aid planning and prioritization of care. Methodology: A descriptive retrospective study of 116 infertile patients presenting to the fertility clinic of the University College Hospital, Ibadan, Nigeria from inception on the 14<sup>th</sup> of February 2019 and 31<sup>st</sup> of December 2022.Data was analyzed using the Statical Package for Social Sciences (IBM, SPSS, New York) version 23. Descriptive statistics were used to summarize the results which were presented with the aid of bar charts and frequency tables. Result: The mean age of the patients was 40.70 ± 6.62 years. Post-menopausal patients accounted for about one-fifth of the study population while 80.2% (93 women) were older than 35 years. The mean duration of infertility was 9.39 ± 6.11years and nine patients (7.8%) had a duration greater than 2 decades. Secondary infertility occurred in 67.2% of the women. Twenty-nine women (25%) had undergone myomectomy prior to presentation. Hypertension (11.2%) was the most prevalent comorbidity. Nineteen patients (16.4%) had used contraceptives in the past with the male condom (36.8%)being the most preponderant. Sixty-seven patients had experienced pregnancy losses before 28 weeks of gestation while just 16 patients (13.8%) had undergone ART, and none was successful. Conclusion: Secondary infertility was the prevalent type of infertility and may not be unconnected with the low contraceptive usage and high risk of sexually transmitted infection. Late presentation coupled with a large proportion of post-menopausal clientele suggests delayed health-seeking behavior most probably due to the prohibitive cost of ART. The need to streamline services offered in public fertility clinics is paramount in low-income countries grappling with scarce resources. A pragmatic approach will involve the provision of low-cost ART, while enhancing gamete donation programs through the implementation of gamete sharing policies. This will invariably bridge the unmet need and skewed access to ART in developing countries.展开更多
In today's world where everything is interconnected, air-space-ground integrated networks have become a current research hotspot due to their characteristics of high, long and wide area coverage. Given the constan...In today's world where everything is interconnected, air-space-ground integrated networks have become a current research hotspot due to their characteristics of high, long and wide area coverage. Given the constantly changing and dynamic characteristics of air and space networks, along with the sheer number and complexity of access nodes involved, the process of rapid networking presents substantial challenges. In order to achieve rapid and dynamic networking of air-space-ground integrated networks, this paper focuses on the study of methods for large-scale nodes to randomly access satellites. This paper utilizes a cross-layer design methodology to enhance the access success probability by jointly optimizing the physical layer and medium access control(MAC) layer aspects. Load statistics priority random access(LSPRA) technology is proposed.Experiments show that when the number of nodes is greater than 1 000, this method can also ensure stable access performance, providing ideas for the design of air-space-ground integrated network access systems.展开更多
Geothermal energy is considered a renewable,environmentally friendly,especially carbon-free,sustainable energy source that can solve the problem of climate change.In general,countries with geothermal energy resources ...Geothermal energy is considered a renewable,environmentally friendly,especially carbon-free,sustainable energy source that can solve the problem of climate change.In general,countries with geothermal energy resources are the ones going through the ring of fire.Therefore,not every country is lucky enough to own this resource.As a country with 117 active volcanoes and within the world’s ring of fire,it is a country whose geothermal resources are estimated to be about 40%of the world’s geothermal energy potential.However,the percentage used compared to the geothermal potential is too small.Therefore,this is the main energy source that Indonesia is aiming to exploit and use.However,the deployment and development of this energy source are still facing many obstacles due to many aspects from budget sources due to high capital costs,factory construction location,quality of resources,and conflicts of the local community.In this context,determining the optimal locations for geothermal energy sites(GES)is one of the most important and necessary issues.To strengthen the selection methods,this study applies a two-layer fuzzy multi-criteria decision-making method.Through the layers,the Ordinal Priority Approach(OPA)is proposed to weight the sub-criteria,the main criterion,and the sustainability factors.In layer 2,the Neutrosophic Fuzzy Axiomatic Design(NFAD)is applied to rank and evaluate potential locations for geothermal plant construction.Choosing the right geothermal energy site can bring low-cost efficiency,no greenhouse gas emissions,and quickly become the main energy source providing electricity for Indonesia.The final ranking shows Papua,Kawah Cibuni,and Moluccas as the three most suitable cities to build geothermal energy systems.Kawah Cibuni was identified as the most potential GES in Indonesia,with a score of 0.46.Papua is the second most promising GES with a score of 0.45.Next is the Moluccas,with a score of 0.39.However,the three least potential sites among the 15 studied sites are Lumut Balai,Moluccas and Patuha,with scores of 0.08,0.11 and 0.17,respectively.The conclusion of this study also classifies positions into groups to aid in decision-making.展开更多
On August 20,2024,General Secretary of the Communist Party of Vietnam(CPV)Central Committee and Vietnamese President To Lam concluded his state visit to China.China was the destination for Lam's first overseas vis...On August 20,2024,General Secretary of the Communist Party of Vietnam(CPV)Central Committee and Vietnamese President To Lam concluded his state visit to China.China was the destination for Lam's first overseas visit after taking office as general secretary of the CPV Central Committee,which clearly demonstrates that the heads of both countries attach importance to developing the bilateral relations and that Vietnam regards China as the strategic choice and top priority for its foreign policy.展开更多
During electric vehicle(EV)-assisted grid frequency modulation,inconsistent state of charge(SOC)among EVs can result in overcharging and discharging of the batteries,affecting the stability of the electrical system.As...During electric vehicle(EV)-assisted grid frequency modulation,inconsistent state of charge(SOC)among EVs can result in overcharging and discharging of the batteries,affecting the stability of the electrical system.As a solution,this paper proposes a priority-based frequency regulation strategy for EVs.Firstly,models for the primary and secondary frequency regulation of EV-assisted power grids are established.Secondly,a consensus algorithm is used to construct a distributed com-munication system for EVs.Target SOC values are used to obtain a local frequency regulation priori-ty list.The list is used in an optimal control plan allowing individual EVs to participate in frequency regulation.Finally,a simulation of this strategy under several scenarios is conducted.The results indicate that the strategy ensures uniform SOC among the participating group of EVs,thereby avoi-ding overcharging and discharging of their batteries.It also reduces frequency fluctuations in the electrical system,making the system more robust compared with the frequency regulation strategy that is not priority-based.展开更多
针对跳点搜索(jump point search,JPS)算法路径存在斜向穿越障碍物、搜索过程中存在较多冗余跳点、路径拐点多且靠近障碍物的问题,提出一种安全快速的跳点搜索(safe fast jump point search,SFJPS)算法。该算法重新定义跳点判断规则,使...针对跳点搜索(jump point search,JPS)算法路径存在斜向穿越障碍物、搜索过程中存在较多冗余跳点、路径拐点多且靠近障碍物的问题,提出一种安全快速的跳点搜索(safe fast jump point search,SFJPS)算法。该算法重新定义跳点判断规则,使生成的跳点均为安全跳点,解决了路径中斜向穿越障碍物的情况;加入基于角度的搜索方向优先级判断,有效减少了搜索过程中的冗余节点,加快了搜索速度;基于Bresenham算法对路径上的跳点进行关键跳点筛选,关键跳点生成的路径拐点明显减少,贴近障碍物的路径长度大幅减小,整体路径长度也有所减小。结果表明在不同场景下本文算法相较于A*算法和JPS算法,路径长度分别最大减小了5.42%和4.48%,搜索时间分别最大缩短了98.33%和67.83%,搜索节点数最大减少了99.08%和56.72%,路径拐点数分别最大减少了90.91%和83.33%。相较于Theta*算法路径长度增加了1.17%,搜索时间缩短了91.07%,搜索节点数减少了98.9%。仿真试验证明本文算法规划速度快,路径安全且拐点更少,更加适用于移动机器人路径规划问题。展开更多
基金supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20050201)the National Natural Science Foundation of China (31861143023,31872250 and 31872252)。
文摘Global framework for nature management requires identifying areas of high priority for biodiversity conservation and restoration.The unique environments of Qinghai-Xizang Plateau(QXP) provide irreplaceable habitats for biodiversity which is prominent under future climate change.Despite the recent increase in research interest on conservation priorities,there is a lack of comprehensive and targeted protection strategies for pandemic species under climate change.Here,we compiled an exhaustive dataset with the variables of extinction risk and occurrence records of ectothermic lizards to investigate the conservation priorities in the QXP.We assessed the conservation status of the QXP lizards and identified the priority protected areas within the QXP under future climate scenarios using phylogenetic generalized least squares and ensemble species distribution models.Our analyses suggested nine lizard species to be prioritized for protection,with the most critical priority species being Dopasia gracilis,D.harti,and Phrynocephalus putjatai.Moreover,the priority protected areas covered~4.7%area of the QXP,mostly in the southern QXP and southeastern Hengduan Mountains.Protecting these regions would achieve a conservation effectiveness of≥95%for species richness,phylogenetic and functionaldiversity under climate change.Our findings provide realistic guidance for improving the conservation effectiveness of specific-lizard and-regions in the QXP under climate change.Our“bottom-up”approach could help the conservation efforts of other regions and species as an alternative to“top-down”global maps.
基金funded by the Joint CAS-MPG Research Project(HZXM20225001MI)this research was also supported partly by the key program of National Natural Science Foundation of China(42230708)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region,China(2022TSYCLJ0056).
文摘Central Asia(CA)faces escalating threats from increasing temperature,glacier retreat,biodiversity loss,unsustainable water use,terminal lake shrinkage,and soil salinization,all of which challenge the balance between ecological integrity and socio-economic development essential for achieving Sustainable Development Goals.However,a comprehensive understanding of priority areas from a multi-dimensional perspective is lacking,hindering effective conservation and development strategies.To address this,we developed a comprehensive assessment framework with a tailored indicator system,enabling a spatial evaluation of CA’s priority areas by integrating biodiversity,ecosystem services(ESs),and human activities.Combining zonation and geographical detectors,this approach facilitates spatial prioritization and examines ecological and socio-economic heterogeneity.Our findings reveal a heterogeneous distribution of priority areas across CA,with significant concentrations in eastern mountainous regions,river valleys,and oasis agricultural lands.We identified 184 key districts crucial for ecological and societal sustainability.Attribution analysis shows that natural factors like soil types,precipitation,and evapotranspiration significantly shape these areas,influencing human activities and the distribution of biodiversity and ESs.Multi-dimensional analysis indicates existing protected areas cover only 15%of the top 30%priority areas,revealing substantial conservation gaps.Additionally,a 38%overlap between ESs and human activities,along with 63.25%congruence in integrated areas,underscores significant human impacts on ecological systems and their dependency on ESs.Given CA’s limited resources,it is crucial to implement measures that strengthen conservation efforts,align ecological preservation with socio-economic demands,and enhance resource efficiency through sustainable integrated land and water resource management.
基金supported by the National Natural Science Foundation of China for General Program(42171118)the National Natural Science Foundation of China for Distinguished Young Scholars(41925030)the Special Funding Projects of Talents of Yunnan Province(YNWR-QNBJ-2020-099).
文摘Vegetation restoration is a critical strategy for mitigating debris flow hazards by stabilizing slopes and modifying hydrological processes.Effective planning of priority restoration areas is particularly essential in dry-hot valley regions,where extreme hydrothermal conditions pose significant challenges.This study presents a novel framework that integrates microclimatic variables,such as temperature lapse rates,to enhance the spatial precision of revegetation efforts.The Reshuihe watershed in Southwest China,a representative dry-hot valley,was chosen as the study area.By analyzing hourly temperature and rainfall across an elevation gradient,a quadratic relationship between temperature lapse rates and weak rainfall events was identified,underscoring the role of microclimatic processes in influencing rainfall distribution and plant-available water.Rainfall peaks were observed when the temperature lapse rate was approximately 4.5°C/km.This relationship was incorporated into a cost-based restoration framework using the Marxan model,optimizing the spatial allocation of priority areas for revegetation.Results demonstrated that integrating microclimatic variables significantly improved the effectiveness of revegetation strategies,particularly for reducing debris flow risks.The lowest restoration costs were observed between elevations of 3200 m and 3300 m,where strong correlations between temperature lapse rates and rainfall were recorded.Priority restoration areas covered 41 km^(2),targeting zones with high debris flow risks.These findings highlight the value of incorporating microclimatic data into revegetation planning,enabling cost-effective and ecologically sustainable hazard mitigation in regions vulnerable to hydrological hazards.
基金supported by the Key R&D Program of Zhejiang Province(Nos.2023C01166 and 2024SJCZX0046)the Zhejiang Provincial Natural Science Foundation of China(Nos.LDT23E05013E05 and LD24E050009)the Natural Science Foundation of Ningbo(No.2021J150),China.
文摘Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.
文摘Shape irregularity,a sub-factor of parcel fragmentation is a problem that hinders sustainable agriculture and is solved using land consolidation projects.Determination of the parcel shape degree contributes significantly to spatial prioritization where there is also a high probability of achieving positive effects of consolidation projects.This study aims to determine the shape degree of the agricultural parcels both at singular and rural county scales in Tekirdag Province,Turkey in 2020 by combining the parcel shape index(PSI) with the minimum bounding geometry index(MBG) to improve parcel scores.Hot-spot zones of the highly irregular and near optimum parcels were also determined using Getis-Ord G_(i)^(*) statistic.The parcel degrees were classified into four categories,namely highly irregular,irregular,regular and near optimum.The obtained unweighted scores of the parameters exhibit deviations from the expected values.After weighting by pairwise comparison,the values approached ideal scores.Among 346 740 parcels,53% were highly irregular and irregular and 47% were regular and near optimum shapes after weighting whereas these were 70% and 30%,respectively before weighting.The average parcel degree of 63 rural counties was regular while the average parcel degree of the remaining 264 rural counties was irregular.The combined use of PSI and MBG index improved the correctness of the parcel shape score.It could be suggested to use as a tool in land consolidation prioritization.
文摘Introduction: Infertilityaffects one in six couples, and it is an important public health issue largely due to thepervasive effects on the emotional and psychological wellbeing of affected couples. In many developing nations emphasis is placed on childbirth and inability to fulfill this role can be very distressing. There is an unmet need for assisted reproductive technology (ART) in many developing countries and where facilities exist, they are mostly privately owned, expensive and concentrated in urban areas. To bridge this gap, public fertility clinics have been established to provide subsidized care. Evaluating the characteristics and peculiarities of clientele presenting at these public facilities will aid planning and prioritization of care. Methodology: A descriptive retrospective study of 116 infertile patients presenting to the fertility clinic of the University College Hospital, Ibadan, Nigeria from inception on the 14<sup>th</sup> of February 2019 and 31<sup>st</sup> of December 2022.Data was analyzed using the Statical Package for Social Sciences (IBM, SPSS, New York) version 23. Descriptive statistics were used to summarize the results which were presented with the aid of bar charts and frequency tables. Result: The mean age of the patients was 40.70 ± 6.62 years. Post-menopausal patients accounted for about one-fifth of the study population while 80.2% (93 women) were older than 35 years. The mean duration of infertility was 9.39 ± 6.11years and nine patients (7.8%) had a duration greater than 2 decades. Secondary infertility occurred in 67.2% of the women. Twenty-nine women (25%) had undergone myomectomy prior to presentation. Hypertension (11.2%) was the most prevalent comorbidity. Nineteen patients (16.4%) had used contraceptives in the past with the male condom (36.8%)being the most preponderant. Sixty-seven patients had experienced pregnancy losses before 28 weeks of gestation while just 16 patients (13.8%) had undergone ART, and none was successful. Conclusion: Secondary infertility was the prevalent type of infertility and may not be unconnected with the low contraceptive usage and high risk of sexually transmitted infection. Late presentation coupled with a large proportion of post-menopausal clientele suggests delayed health-seeking behavior most probably due to the prohibitive cost of ART. The need to streamline services offered in public fertility clinics is paramount in low-income countries grappling with scarce resources. A pragmatic approach will involve the provision of low-cost ART, while enhancing gamete donation programs through the implementation of gamete sharing policies. This will invariably bridge the unmet need and skewed access to ART in developing countries.
基金supported by the National Natural Science Foundation of China (No. 62027801)。
文摘In today's world where everything is interconnected, air-space-ground integrated networks have become a current research hotspot due to their characteristics of high, long and wide area coverage. Given the constantly changing and dynamic characteristics of air and space networks, along with the sheer number and complexity of access nodes involved, the process of rapid networking presents substantial challenges. In order to achieve rapid and dynamic networking of air-space-ground integrated networks, this paper focuses on the study of methods for large-scale nodes to randomly access satellites. This paper utilizes a cross-layer design methodology to enhance the access success probability by jointly optimizing the physical layer and medium access control(MAC) layer aspects. Load statistics priority random access(LSPRA) technology is proposed.Experiments show that when the number of nodes is greater than 1 000, this method can also ensure stable access performance, providing ideas for the design of air-space-ground integrated network access systems.
文摘Geothermal energy is considered a renewable,environmentally friendly,especially carbon-free,sustainable energy source that can solve the problem of climate change.In general,countries with geothermal energy resources are the ones going through the ring of fire.Therefore,not every country is lucky enough to own this resource.As a country with 117 active volcanoes and within the world’s ring of fire,it is a country whose geothermal resources are estimated to be about 40%of the world’s geothermal energy potential.However,the percentage used compared to the geothermal potential is too small.Therefore,this is the main energy source that Indonesia is aiming to exploit and use.However,the deployment and development of this energy source are still facing many obstacles due to many aspects from budget sources due to high capital costs,factory construction location,quality of resources,and conflicts of the local community.In this context,determining the optimal locations for geothermal energy sites(GES)is one of the most important and necessary issues.To strengthen the selection methods,this study applies a two-layer fuzzy multi-criteria decision-making method.Through the layers,the Ordinal Priority Approach(OPA)is proposed to weight the sub-criteria,the main criterion,and the sustainability factors.In layer 2,the Neutrosophic Fuzzy Axiomatic Design(NFAD)is applied to rank and evaluate potential locations for geothermal plant construction.Choosing the right geothermal energy site can bring low-cost efficiency,no greenhouse gas emissions,and quickly become the main energy source providing electricity for Indonesia.The final ranking shows Papua,Kawah Cibuni,and Moluccas as the three most suitable cities to build geothermal energy systems.Kawah Cibuni was identified as the most potential GES in Indonesia,with a score of 0.46.Papua is the second most promising GES with a score of 0.45.Next is the Moluccas,with a score of 0.39.However,the three least potential sites among the 15 studied sites are Lumut Balai,Moluccas and Patuha,with scores of 0.08,0.11 and 0.17,respectively.The conclusion of this study also classifies positions into groups to aid in decision-making.
文摘On August 20,2024,General Secretary of the Communist Party of Vietnam(CPV)Central Committee and Vietnamese President To Lam concluded his state visit to China.China was the destination for Lam's first overseas visit after taking office as general secretary of the CPV Central Committee,which clearly demonstrates that the heads of both countries attach importance to developing the bilateral relations and that Vietnam regards China as the strategic choice and top priority for its foreign policy.
基金Supported by the China Postdoctoral Science Foundation(No.2022M710039).
文摘During electric vehicle(EV)-assisted grid frequency modulation,inconsistent state of charge(SOC)among EVs can result in overcharging and discharging of the batteries,affecting the stability of the electrical system.As a solution,this paper proposes a priority-based frequency regulation strategy for EVs.Firstly,models for the primary and secondary frequency regulation of EV-assisted power grids are established.Secondly,a consensus algorithm is used to construct a distributed com-munication system for EVs.Target SOC values are used to obtain a local frequency regulation priori-ty list.The list is used in an optimal control plan allowing individual EVs to participate in frequency regulation.Finally,a simulation of this strategy under several scenarios is conducted.The results indicate that the strategy ensures uniform SOC among the participating group of EVs,thereby avoi-ding overcharging and discharging of their batteries.It also reduces frequency fluctuations in the electrical system,making the system more robust compared with the frequency regulation strategy that is not priority-based.
文摘针对跳点搜索(jump point search,JPS)算法路径存在斜向穿越障碍物、搜索过程中存在较多冗余跳点、路径拐点多且靠近障碍物的问题,提出一种安全快速的跳点搜索(safe fast jump point search,SFJPS)算法。该算法重新定义跳点判断规则,使生成的跳点均为安全跳点,解决了路径中斜向穿越障碍物的情况;加入基于角度的搜索方向优先级判断,有效减少了搜索过程中的冗余节点,加快了搜索速度;基于Bresenham算法对路径上的跳点进行关键跳点筛选,关键跳点生成的路径拐点明显减少,贴近障碍物的路径长度大幅减小,整体路径长度也有所减小。结果表明在不同场景下本文算法相较于A*算法和JPS算法,路径长度分别最大减小了5.42%和4.48%,搜索时间分别最大缩短了98.33%和67.83%,搜索节点数最大减少了99.08%和56.72%,路径拐点数分别最大减少了90.91%和83.33%。相较于Theta*算法路径长度增加了1.17%,搜索时间缩短了91.07%,搜索节点数减少了98.9%。仿真试验证明本文算法规划速度快,路径安全且拐点更少,更加适用于移动机器人路径规划问题。