Based on the distribution characteristic of magnetic field along the polish wheel,the four-axis linkage technique is advanced to replace a standard five-axis one to figure low-gradient optical surfaces with a raster t...Based on the distribution characteristic of magnetic field along the polish wheel,the four-axis linkage technique is advanced to replace a standard five-axis one to figure low-gradient optical surfaces with a raster tool-path in magnetorheological finishing(MRF).After introducing the fundaments of such simplification,the figuring reachability of a four-axis system for the low-gradient optics was theoretically analyzed.Further validation including magnetic field intensity and influence function characteristic was performed to establish its application.To demonstrate the correctness,feasibility and applicability of such technique,a K4 spherical part was figured by two iterations of MRF with surface form error improved to 0.219λPV and 0.027λRMS.Meanwhile,the surface roughness was also improved a lot in MRF process.These theoretical analyses and experimental results both indicate that high form accuracy and excellent surface quality can be obtained by using the four-axis linkage technique in the process of figuring low-gradient optical elements,and the four-axis linkage system undoubtedly is much more easy to control and much more economical.展开更多
Documenting the recovery of hydrologic functions following perturbations of a landscape/watershed is important to address issues associated with land use change and ecosystem restoration. High resolution LiDAR data fo...Documenting the recovery of hydrologic functions following perturbations of a landscape/watershed is important to address issues associated with land use change and ecosystem restoration. High resolution LiDAR data for the USDAForestServiceSanteeExperimentalForestin coastalSouth Carolina,USAwas used to delineate the remnant historical water management structures within the watersheds supporting bottomland hardwood forests that are typical of the re- gion. Hydrologic functions were altered during the early1700’s agricultural use period for rice cultivation, with changes to detention storage, impoundments, and runoff routing. Since late1800’s, the land was left to revert to forests, without direct intervention. The resultant bottomlands, while typical in terms of vegetative structure and composition, still have altered hydrologic pathways and functions due to the historical land use. Furthermore, an accurate estimate of the watershed drainage area (DA) contributing to stream flow is critical for reliable estimates of peak flow rate, runoff depth and coefficient, as well as water and chemical balance. Peak flow rate, a parameter widely used in design of channels and cross drainage structures, is calculated as a function of the DA and other parameters. However, in contrast with the upland watersheds, currently available topographic maps and digital elevation models (DEMs) used to estimate the DA are not adequate for flat, low-gradient Coastal Plain (LCP) landscape. In this paper we explore a case study of a 3rd order watershed (equivalent to 14-digit hydrologic unit code (HUC)) at headwaters of east branch of Cooper River draining to Charleston Harbor, SC to assess the drainage area and corresponding mean annual runoff coefficient based on various DEMs including LiDAR data. These analyses demonstrate a need for application of LiDAR-based DEMs together with field verification to improve the basis for assessments of hydrology, watershed drainage characteristics, and modeling in the LCP.展开更多
基金Project(91023042)supported by the National Natural Science Foundation of ChinaProject(2011CB013200)supported by the National Basic Research Program of China+1 种基金Project(B090302)supported by the Fund of Innovation,Graduate School of National University of Defense Technology,ChinaProject(CX2009B004)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Based on the distribution characteristic of magnetic field along the polish wheel,the four-axis linkage technique is advanced to replace a standard five-axis one to figure low-gradient optical surfaces with a raster tool-path in magnetorheological finishing(MRF).After introducing the fundaments of such simplification,the figuring reachability of a four-axis system for the low-gradient optics was theoretically analyzed.Further validation including magnetic field intensity and influence function characteristic was performed to establish its application.To demonstrate the correctness,feasibility and applicability of such technique,a K4 spherical part was figured by two iterations of MRF with surface form error improved to 0.219λPV and 0.027λRMS.Meanwhile,the surface roughness was also improved a lot in MRF process.These theoretical analyses and experimental results both indicate that high form accuracy and excellent surface quality can be obtained by using the four-axis linkage technique in the process of figuring low-gradient optical elements,and the four-axis linkage system undoubtedly is much more easy to control and much more economical.
文摘Documenting the recovery of hydrologic functions following perturbations of a landscape/watershed is important to address issues associated with land use change and ecosystem restoration. High resolution LiDAR data for the USDAForestServiceSanteeExperimentalForestin coastalSouth Carolina,USAwas used to delineate the remnant historical water management structures within the watersheds supporting bottomland hardwood forests that are typical of the re- gion. Hydrologic functions were altered during the early1700’s agricultural use period for rice cultivation, with changes to detention storage, impoundments, and runoff routing. Since late1800’s, the land was left to revert to forests, without direct intervention. The resultant bottomlands, while typical in terms of vegetative structure and composition, still have altered hydrologic pathways and functions due to the historical land use. Furthermore, an accurate estimate of the watershed drainage area (DA) contributing to stream flow is critical for reliable estimates of peak flow rate, runoff depth and coefficient, as well as water and chemical balance. Peak flow rate, a parameter widely used in design of channels and cross drainage structures, is calculated as a function of the DA and other parameters. However, in contrast with the upland watersheds, currently available topographic maps and digital elevation models (DEMs) used to estimate the DA are not adequate for flat, low-gradient Coastal Plain (LCP) landscape. In this paper we explore a case study of a 3rd order watershed (equivalent to 14-digit hydrologic unit code (HUC)) at headwaters of east branch of Cooper River draining to Charleston Harbor, SC to assess the drainage area and corresponding mean annual runoff coefficient based on various DEMs including LiDAR data. These analyses demonstrate a need for application of LiDAR-based DEMs together with field verification to improve the basis for assessments of hydrology, watershed drainage characteristics, and modeling in the LCP.