Video Super-Resolution (SR) reconstruction produces video sequences with High Resolution (HR) via the fusion of several Low-Resolution (LR) video frames. Traditional methods rely on the accurate estimation of su...Video Super-Resolution (SR) reconstruction produces video sequences with High Resolution (HR) via the fusion of several Low-Resolution (LR) video frames. Traditional methods rely on the accurate estimation of subpixel motion, which constrains their applicability to video sequences with relatively simple motions such as global translation. We propose an efficient iterative spatio-temporal adaptive SR reconstruction model based on Zemike Moment (ZM), which is effective for spatial video sequences with arbitrary motion. The model uses region correlation judgment and self-adaptive threshold strategies to improve the effect and time efficiency of the ZM-based SR method. This leads to better mining of non-local self-similarity and local structural regularity, and is robust to noise and rotation. An efficient iterative curvature-based interpolation scheme is introduced to obtain the initial HR estimation of each LR video frame. Experimental results both on spatial and standard video sequences demonstrate that the proposed method outperforms existing methods in terms of both subjective visual and objective quantitative evaluations, and greatly improves the time efficiency.展开更多
Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like...Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like transform that analyzes seismic data following variable slopes of seismic events. The local slope is the key of seismic data. An earlier work used traditional normal moveout(NMO) equation to construct velocity-dependent(VD) seislet transform, which only adapt to hyperbolic condition. In this work, we use shifted hyperbola NMO equation to obtain more accurate slopes in nonhyperbolic situation. Self-adaptive threshold method was used to remove random noise while preserving useful signal. The synthetic and field data tests demonstrate that this method is more suitable for noise attenuation.展开更多
基金the National Basic Research Program of China (973 Program) under Grant No.2012CB821200,the National Natural Science Foundation of China under Grants No.91024001,No.61070142,the Beijing Natural Science Foundation under Grant No.4111002
文摘Video Super-Resolution (SR) reconstruction produces video sequences with High Resolution (HR) via the fusion of several Low-Resolution (LR) video frames. Traditional methods rely on the accurate estimation of subpixel motion, which constrains their applicability to video sequences with relatively simple motions such as global translation. We propose an efficient iterative spatio-temporal adaptive SR reconstruction model based on Zemike Moment (ZM), which is effective for spatial video sequences with arbitrary motion. The model uses region correlation judgment and self-adaptive threshold strategies to improve the effect and time efficiency of the ZM-based SR method. This leads to better mining of non-local self-similarity and local structural regularity, and is robust to noise and rotation. An efficient iterative curvature-based interpolation scheme is introduced to obtain the initial HR estimation of each LR video frame. Experimental results both on spatial and standard video sequences demonstrate that the proposed method outperforms existing methods in terms of both subjective visual and objective quantitative evaluations, and greatly improves the time efficiency.
基金Supported by Project of National Natural Science Foundation of China(No.41004041)
文摘Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like transform that analyzes seismic data following variable slopes of seismic events. The local slope is the key of seismic data. An earlier work used traditional normal moveout(NMO) equation to construct velocity-dependent(VD) seislet transform, which only adapt to hyperbolic condition. In this work, we use shifted hyperbola NMO equation to obtain more accurate slopes in nonhyperbolic situation. Self-adaptive threshold method was used to remove random noise while preserving useful signal. The synthetic and field data tests demonstrate that this method is more suitable for noise attenuation.