期刊文献+
共找到1,060篇文章
< 1 2 53 >
每页显示 20 50 100
Similarity measurement method of high-dimensional data based on normalized net lattice subspace 被引量:4
1
作者 李文法 Wang Gongming +1 位作者 Li Ke Huang Su 《High Technology Letters》 EI CAS 2017年第2期179-184,共6页
The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities... The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity,leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals,and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this method,three data types are used,and seven common similarity measurement methods are compared.The experimental result indicates that the relative difference of the method is increasing with the dimensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition,the similarity range of this method in different dimensions is [0,1],which is fit for similarity analysis after dimensionality reduction. 展开更多
关键词 high-dimensional data the curse of dimensionality SIMILARITY normalIZATION SUBSPACE NPsim
在线阅读 下载PDF
Optical-Elevation Data Co-Registration and Classification-Based Height Normalization for Building Detection in Stereo VHR Images 被引量:1
2
作者 Alaeldin Suliman Yun Zhang 《Advances in Remote Sensing》 2017年第2期103-119,共17页
Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable dete... Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable detection. This process requires two critical steps: optical-elevation data co-registration and aboveground elevation calculation. These two steps are still challenging to some extent. Therefore, this paper introduces optical-elevation data co-registration and normalization techniques for generating a dataset that facilitates elevation-based building detection. For achieving accurate co-registration, a dense set of stereo-based elevations is generated and co-registered to their relevant image based on their corresponding image locations. To normalize these co-registered elevations, the bare-earth elevations are detected based on classification information of some terrain-level features after achieving the image co-registration. The developed method was executed and validated. After implementation, 80% overall-quality of detection result was achieved with 94% correct detection. Together, the developed techniques successfully facilitate the incorporation of stereo-based elevations for detecting buildings in VHR remote sensing images. 展开更多
关键词 Building Detection Very High Resolution Images Optical-Elevation data CO-REGISTRATION Classification-Based Height normalization
暂未订购
Bayesian Inference of Spatially Correlated Binary Data Using Skew-Normal Latent Variables with Application in Tooth Caries Analysis
3
作者 Solaiman Afroughi 《Open Journal of Statistics》 2015年第2期127-139,共13页
The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biolog... The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodology. Assuming a normal distribution for the latent random variable may not be realistic and wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of results and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spatial models. A review of the recent literature in spatial statistics shows that there is an increasing tendency in presenting models that are involving skew distributions, especially skew-normal ones. In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the spatially correlated binary data that were acquired on uncorrelated lattices. The proposed methodology was applied in inspecting spatial dependency and related factors of tooth caries occurrences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results indicated that the skew-normal latent variable model had validity and it made a decent criterion that fitted caries data. 展开更多
关键词 Spatial data LATENT Variable Autologistic Model SKEW-normal Distribution BAYESIAN INFERENCE TOOTH CARIES
暂未订购
非参数固定效应Panel Data模型的分位数回归推断 被引量:1
4
作者 吕秀梅 《统计与信息论坛》 CSSCI 2012年第6期28-32,共5页
利用分位数回归方法,讨论了非参数固定效应Panel Data模型的估计和检验问题,得到了参数估计的渐近正态性及收敛速度。同时,建立一个秩得分(rank score)统计量来检验模型的固定效应,并证明了这个统计量渐近服从标准正态分布。
关键词 分位数回归 渐近正态 固定效应Panel data模型
在线阅读 下载PDF
基于Normalized Cut的基因表达数据聚类 被引量:4
5
作者 王俊生 王年 +1 位作者 郭秀丽 唐俊 《安徽大学学报(自然科学版)》 CAS 北大核心 2012年第4期68-72,共5页
利用基因表达数据进行聚类分析可提高肿瘤诊断的正确率,对生物医学研究具有重要意义.该文将Normalized Cut应用于基因表达数据的聚类中,将样本映射为高维空间的点,利用亲近矩阵和度矩阵构造正规Laplacian矩阵,经SVD分解得到反映原始样... 利用基因表达数据进行聚类分析可提高肿瘤诊断的正确率,对生物医学研究具有重要意义.该文将Normalized Cut应用于基因表达数据的聚类中,将样本映射为高维空间的点,利用亲近矩阵和度矩阵构造正规Laplacian矩阵,经SVD分解得到反映原始样本类别信息的指示向量,利用指示向量各分量的符号差异实现基因表达数据的聚类.通过对白血病和结肠癌数据集的实验,证明了该文方法的有效性. 展开更多
关键词 聚类 指示向量 normalized CUT 基因表达数据
在线阅读 下载PDF
Evaluation of Two Absolute Radiometric Normalization Algorithms for Pre-processing of Landsat Imagery 被引量:13
6
作者 徐涵秋 《Journal of China University of Geosciences》 SCIE CSCD 2006年第2期146-150,157,共6页
In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illuminati... In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference. 展开更多
关键词 LANDSAT radiometrie correction data normalization pseudo-invariant features image processing.
在线阅读 下载PDF
Ensembling Neural Networks for User’s Indoor Localization Using Magnetic Field Data from Smartphones 被引量:2
7
作者 Imran Ashraf Soojung Hur +1 位作者 Yousaf Bin Zikria Yongwan Park 《Computers, Materials & Continua》 SCIE EI 2021年第8期2597-2620,共24页
Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripp... Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripples the performance of such approaches owing to the variability of the magnetic field data.In the same vein,smaller lengths of magnetic field data decrease the localization accuracy substantially.The current study proposes the use of multiple neural networks like deep neural network(DNN),long short term memory network(LSTM),and gated recurrent unit network(GRN)to perform indoor localization based on the embedded magnetic sensor of the smartphone.A voting scheme is introduced that takes predictions from neural networks into consideration to estimate the current location of the user.Contrary to conventional magnetic field-based localization approaches that rely on the magnetic field data intensity,this study utilizes the normalized magnetic field data for this purpose.Training of neural networks is carried out using Galaxy S8 data while the testing is performed with three devices,i.e.,LG G7,Galaxy S8,and LG Q6.Experiments are performed during different times of the day to analyze the impact of time variability.Results indicate that the proposed approach minimizes the impact of smartphone variability and elevates the localization accuracy.Performance comparison with three approaches reveals that the proposed approach outperforms them in mean,50%,and 75%error even using a lesser amount of magnetic field data than those of other approaches. 展开更多
关键词 Indoor localization magnetic field data long short term memory network data normalization gated recurrent unit network deep learning
在线阅读 下载PDF
An Evolutionary Normalization Algorithm for Signed Floating-Point Multiply-Accumulate Operation
8
作者 Rajkumar Sarma Cherry Bhargava Ketan Kotecha 《Computers, Materials & Continua》 SCIE EI 2022年第7期481-495,共15页
In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier ... In the era of digital signal processing,like graphics and computation systems,multiplication-accumulation is one of the prime operations.A MAC unit is a vital component of a digital system,like different Fast Fourier Transform(FFT)algorithms,convolution,image processing algorithms,etcetera.In the domain of digital signal processing,the use of normalization architecture is very vast.The main objective of using normalization is to performcomparison and shift operations.In this research paper,an evolutionary approach for designing an optimized normalization algorithm is proposed using basic logical blocks such as Multiplexer,Adder etc.The proposed normalization algorithm is further used in designing an 8×8 bit Signed Floating-Point Multiply-Accumulate(SFMAC)architecture.Since the SFMAC can accept an 8-bit significand and a 3-bit exponent,the input to the said architecture can be somewhere between−(7.96872)_(10) to+(7.96872)_(10).The proposed architecture is designed and implemented using the Cadence Virtuoso using 90 and 130 nm technologies(in Generic Process Design Kit(GPDK)and Taiwan Semiconductor Manufacturing Company(TSMC),respectively).To reduce the power consumption of the proposed normalization architecture,techniques such as“block enabling”and“clock gating”are used rigorously.According to the analysis done on Cadence,the proposed architecture uses the least amount of power compared to its current predecessors. 展开更多
关键词 data normalization cadence virtuoso signed-floating-point MAC evolutionary optimized algorithm block enabling clock gating
在线阅读 下载PDF
Monitoring Soil Salt Content Using HJ-1A Hyperspectral Data: A Case Study of Coastal Areas in Rudong County, Eastern China 被引量:5
9
作者 LI Jianguo PU Lijie +5 位作者 ZHU Ming DAI Xiaoqing XU Yan CHEN Xinjian ZHANG Lifang ZHANG Runsen 《Chinese Geographical Science》 SCIE CSCD 2015年第2期213-223,共11页
Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of m... Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale. 展开更多
关键词 soil salt content normalized differential vegetation index(NDVI) hyperspectral data Huan Jing-Hyper Spectral Imager(HJ-HSI) coastal area eastern China
在线阅读 下载PDF
ESTIMATION FOR THE AYMPTOTIC VARIANCE OF PARAMETRIC ESTIMATES IN PARTIAL LINEAR MODEL WITH CENSORED DATA 被引量:2
10
作者 秦更生 蔡雷 《Acta Mathematica Scientia》 SCIE CSCD 1996年第2期192-208,共17页
Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobse... Consider tile partial linear model Y=Xβ+ g(T) + e. Wilers Y is at risk of being censored from the right, g is an unknown smoothing function on [0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator for the asymptotic variance of βn(βn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for,En, and obtain the convergest rates for En and the strong uniform convergent rates for gn(gn). 展开更多
关键词 Partial linear model Censored data Kernel method Asymptotic normality Thc law of the iterated logarithm.
在线阅读 下载PDF
Performance Evaluation of Quicksort with GPU Dynamic Parallelism for Gene-Expression Quantile Normalization
11
作者 Roberto Pinto Souto Carla Osthoff +2 位作者 Douglas Augusto Oswaldo Trelles Ana Tereza Ribeiro de Vasconcelos 《通讯和计算机(中英文版)》 2013年第12期1522-1528,共7页
关键词 快速排序算法 基因表达数据 并行实现 GPU 绩效评估 位数 现代分子生物学 寡核苷酸微阵列
在线阅读 下载PDF
Asymptotic Properties of Wavelet Estimators in a Semiparametric Regression Model with Censored Data 被引量:1
12
作者 HU Hongchang FENG Yuan 《Wuhan University Journal of Natural Sciences》 CAS 2012年第4期290-296,共7页
Consider a semiparametric regression model Y_i=X_iβ+g(t_i)+e_i, 1 ≤ i ≤ n, where Y_i is censored on the right by another random variable C_i with known or unknown distribution G. The wavelet estimators of param... Consider a semiparametric regression model Y_i=X_iβ+g(t_i)+e_i, 1 ≤ i ≤ n, where Y_i is censored on the right by another random variable C_i with known or unknown distribution G. The wavelet estimators of parameter and nonparametric part are given by the wavelet smoothing and the synthetic data methods. Under general conditions, the asymptotic normality for the wavelet estimators and the convergence rates for the wavelet estimators of nonparametric components are investigated. A numerical example is given. 展开更多
关键词 semiparametric regression model censored data wavelet estimate asymptotic normality convergence rate in probability
原文传递
Classification of Vegetation in North Tibet Plateau Based on MODIS Time-Series Data 被引量:1
13
作者 LU Yuan YAN Yan TAO Heping 《Wuhan University Journal of Natural Sciences》 CAS 2008年第3期273-278,共6页
Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal... Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal variations on the pixels selected from different vegetation type were analyzed. The Savitzky-Golay filtering algorithm was applied to perform a filtration processing for MODIS-NDVI time-series data. The processed time-series curves can reflect a real variation trend of vegetation growth. The NDVI time-series curves of coniferous forest, high-cold meadow, high-cold meadow steppe and high-cold steppe all appear a mono-peak model during vegetation growth with the maximum peak occurring in August. A decision-tree classification model was established according to either NDVI time-series data or land surface temperature data. And then, both classifying and processing for vegetations were carried out through the model based on NDVI time-series curves. An accuracy test illustrates that classification results are of high accuracy and credibility and the model is conducive for studying a climate variation and estimating a vegetation production at regional even global scale. 展开更多
关键词 vegetation classification moderate resolution imaging spectroradiometer normalized difference vegetation index time-series data North Tibet Plateau
在线阅读 下载PDF
Lithological mapping with multispectral data–setup and application of a spectral database for rocks in the Balakot area, Northern Pakistan
14
作者 Michael FUCHS Adnan A.AWAN +4 位作者 Sardar S.AKHTAR Ijaz AHMAD Simon SADIQ Asif RAZZAK Naghmah HAIDER 《Journal of Mountain Science》 SCIE CSCD 2017年第5期948-963,共16页
In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan... In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan spectral library(pklib) version 0.1, contains the analysis data of sixty rock samples taken in the Balakot region in Northern Pakistan.The spectral library is implemented as SQLite database. Structure and naming are inspired by the convention system of the ASTER Spectral Library. Usability, application and benefit of the pklib were evaluated and depicted taking two approaches, the multivariate and the spectral based. The spectral information were used to create indices. The indices were applied to Landsat and ASTER data tosupportthespatial delineation of outcropping rock sequences instratigraphic formations. The application of the indices introduced in this paper helps to identify spots where specific lithological characteristics occur. Especially in areas with sparse or missing detailed geological mapping, the spectral discrimination via remote sensing data can speed up the survey. The library can be used not only to support the improvement of factor maps for landslide susceptibility analysis, but also to provide a geoscientific basisto further analyze the lithological spotin numerous regions in the Hindu Kush. 展开更多
关键词 Lithological mapping Multispectral data Spectral library normalized difference index Northern Pakistan
原文传递
A new approach to retrieve leaf normal distribution using terrestrial laser scanners 被引量:2
15
作者 Shengye Jin Masayuki Tamura Junichi Susaki 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第3期631-638,共8页
Leaf normal distribution is an important structural characteristic of the forest canopy. Although terrestrial laser scanners(TLS) have potential for estimating canopy structural parameters, distinguishing between le... Leaf normal distribution is an important structural characteristic of the forest canopy. Although terrestrial laser scanners(TLS) have potential for estimating canopy structural parameters, distinguishing between leaves and nonphotosynthetic structures to retrieve the leaf normal has been challenging. We used here an approach to accurately retrieve the leaf normals of camphorwood(Cinnamomum camphora) using TLS point cloud data.First, nonphotosynthetic structures were filtered by using the curvature threshold of each point. Then, the point cloud data were segmented by a voxel method and clustered by a Gaussian mixture model in each voxel. Finally, the normal vector of each cluster was computed by principal component analysis to obtain the leaf normal distribution. We collected leaf inclination angles and estimated the distribution, which we compared with the retrieved leaf normal distribution. The correlation coefficient between measurements and obtained results was 0.96, indicating a good coincidence. 展开更多
关键词 Leaf normal distribution Leaf inclinationangle Terrestrial laser scanner Point cloud data Curvature - Clustering
在线阅读 下载PDF
基于批归一化卷积神经网络算法的图像分类识别方法研究
16
作者 谢志明 谷芳 《软件工程》 2025年第5期21-26,共6页
为解决传统神经网络在CIFAR-10(Canadian Institute For Advanced Research)数据集上进行图像分类识别时,存在的模型准确率较低和训练过程易发生过拟合现象等问题,提出了一种将卷积神经网络和批归一化相结合的新神经网络结构构建方法。... 为解决传统神经网络在CIFAR-10(Canadian Institute For Advanced Research)数据集上进行图像分类识别时,存在的模型准确率较低和训练过程易发生过拟合现象等问题,提出了一种将卷积神经网络和批归一化相结合的新神经网络结构构建方法。该方法首先对数据集进行数据增强和边界填充处理,其次对典型的CNN(Convolutional Neural Networks)网络结构进行改进,移除了卷积层组中的池化层,仅保留了卷积层和BN(Batch Normalization)层,并适量增加卷积层组。为了验证模型的有效性和准确性,设计了6组不同的神经网络结构对模型进行训练。实验结果表明,在相同训练周期数下,推荐使用的model-6模型表现最佳,测试准确率高达90.17%,突破了长期以来经典CNN在CIFAR-10数据集上难于达到90%准确率的瓶颈,为图像分类识别提供了新的解决方案和模型参考。 展开更多
关键词 图像分类识别 卷积神经网络 批归一化 数据增强 边界填充
在线阅读 下载PDF
A KERNEL ESTIMATOR OF A DENSITY FUNCTION IN MULTIVARIATE CASE FROM RANDOMLY CENSORED DATA
17
作者 周勇 《Acta Mathematica Scientia》 SCIE CSCD 1996年第2期170-180,共11页
A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error ... A kernel density estimator is proposed when tile data are subject to censorship in multivariate case. The asymptotic normality, strong convergence and asymptotic optimal bandwidth which minimize the mean square error of the estimator are studied. 展开更多
关键词 Kernel density estimator asymptotic normality product-limit estimator mean square error and censored data.
在线阅读 下载PDF
区间数据偏度系数的估计
18
作者 赵志文 臧嘉琦 《佳木斯大学学报(自然科学版)》 2025年第9期175-177,共3页
文献中定义了区间数据的度量以及数学期望、方差和协方差等数字特征.如何对区间数据的非对称性进行定量研究,目前还没有涉及.在此针对区间数据统计分析中的非对称性度量问题,定义了区间数据的偏度系数.基于区间样本,给出了区间数据偏度... 文献中定义了区间数据的度量以及数学期望、方差和协方差等数字特征.如何对区间数据的非对称性进行定量研究,目前还没有涉及.在此针对区间数据统计分析中的非对称性度量问题,定义了区间数据的偏度系数.基于区间样本,给出了区间数据偏度系数的矩估计量,同时证明了该估计量的相合性和渐近正态性.为验证所提方法的有效性,设计了蒙特卡洛模拟实验,利用Matlab生成不同分布下的区间数据,研究结果表明,该估计量具有较小的均方误差. 展开更多
关键词 区间数据 偏度系数 矩估计 渐近正态性
在线阅读 下载PDF
高能光源吸收器轮廓度误差评定方法研究
19
作者 韩圆颖 董岚 +12 位作者 王铜 卢尚 闫路平 张露彦 刘晓阳 闫皓月 门玲鸰 王小龙 李波 梁静 马娜 何振强 柯志勇 《计量学报》 北大核心 2025年第9期1324-1330,共7页
对高能同步辐射光源储存环光子吸收器的轮廓度误差评定方法进行了研究,选取一种合适的数据配准方法来实现轮廓度误差的高精度求解。利用采样点归一化方法和模型匹配方法,对56个光子吸收器在三坐标测量机下的实测数据进行处理,实现设计... 对高能同步辐射光源储存环光子吸收器的轮廓度误差评定方法进行了研究,选取一种合适的数据配准方法来实现轮廓度误差的高精度求解。利用采样点归一化方法和模型匹配方法,对56个光子吸收器在三坐标测量机下的实测数据进行处理,实现设计基准与测量基准的统一,消除位置误差,得到轮廓度误差e_p值,并对2种方法的可靠性进行了分析。结果表明模型匹配方法的轮廓度误差评定精度明显优于采样点归一化方法,且吸收器加工精度越差,2种方法下的轮廓度值差距越大;当吸收器加工精度较高时,即实测和理论点集间拟合偏差在0.1 mm之内,2种方法下的轮廓度值差值在0.02 mm之内。 展开更多
关键词 几何量计量 光子吸收器 三坐标测量机 轮廓度误差 归一化方法 模型匹配方法 数据配准
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部