This study deduces a general inversion of continuous wavelet transform (CWT) with timescale being real rather than positive. In conventional CWT inversion, wavelet’s dual is assumed to be a reconstruction wavelet or ...This study deduces a general inversion of continuous wavelet transform (CWT) with timescale being real rather than positive. In conventional CWT inversion, wavelet’s dual is assumed to be a reconstruction wavelet or a localized function. This study finds that wavelet’s dual can be a harmonic which is not local. This finding leads to new CWT inversion formulas. It also justifies the concept of normal wavelet transform which is useful in time-frequency analysis and time-frequency filtering. This study also proves a law for CWT inversion: either wavelet or its dual must integrate to zero.展开更多
Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in...Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.展开更多
文摘This study deduces a general inversion of continuous wavelet transform (CWT) with timescale being real rather than positive. In conventional CWT inversion, wavelet’s dual is assumed to be a reconstruction wavelet or a localized function. This study finds that wavelet’s dual can be a harmonic which is not local. This finding leads to new CWT inversion formulas. It also justifies the concept of normal wavelet transform which is useful in time-frequency analysis and time-frequency filtering. This study also proves a law for CWT inversion: either wavelet or its dual must integrate to zero.
文摘Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.